Advertisement

A Novel Ag2O/Fe–TiO2 Photocatalyst for CO2 Conversion into Methane Under Visible Light

  • N. R. KhalidEmail author
  • M. Khalid Hussain
  • G. Murtaza
  • M. IkramEmail author
  • M. Ahmad
  • A. Hammad
Article
  • 73 Downloads

Abstract

Modified TiO2 based nanomaterials have attained significant interest because of their unique morphology and excellent optical and photocatalytic properties. In this research, a very novel and highly efficient Ag2O/Fe–TiO2 porous structure was developed by simple hydrothermal method. The structural and morphological properties of the photocatalysts were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface areas of the samples were measured by Brunauer–Emmett–Teller theory (BET). The chemical composition and optical properties were investigated using X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. The optical absorption measurements show a clear red-shift in absorption edge of Fe–TiO2 after loading of Ag2O (Ag2O/Fe–TiO2 composite). Moreover, Ag2O varying ratio (0–15 at.%) has also enhanced the efficiency of Ag2O/Fe–TiO2 photocatalyst for CO2 conversion into methane under visible light illumination (λ ≥ 420 nm). The optimum ratio of Ag2O loading which exhibited maximum performance is 10 at.%. Moreover, the 10%Ag2O/Fe–TiO2 composite synthesized at 180 °C hydrothermal temperature showed an excellent increase in photocatalytic activity than other composites synthesized at 150 and 210 °C. This excellent performance of photocatalyst can be attributed to the highly porous petal-like structure of composite. Therefore, it is expected that the present study will be a good addition in literature for designing highly active photocatalytic materials for reduction of CO2 into useful hydrocarbons.

Keywords

TiO2 Hydrothermal method Photocatalysis CO2 conversion Methane formation 

Notes

References

  1. 1.
    A. Goeppert, M. Czaun, J.P. Jones, G.S. Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products–closing the loop. Chem. Soc. Rev. 43(23), 7995–8048 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3(1), 43–81 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Zhou, P. Li, J. Liu, Z. Chen, L. Liu, D. Dontsova et al., Biomimetic polymeric semiconductor-based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 25, 128–135 (2016)CrossRefGoogle Scholar
  5. 5.
    P.Y. Liou, S.C. Chen, J.C. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 4(4), 1487–1494 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Iwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 138(32), 10260–10264 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698), 637–638 (1979)CrossRefGoogle Scholar
  8. 8.
    G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148(3–4), 191–205 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 396(1–2), 21–26 (1995)CrossRefGoogle Scholar
  10. 10.
    I.H. Tseng, W.C. Chang, J.C. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B 37(1), 37–48 (2002)CrossRefGoogle Scholar
  11. 11.
    I.H. Tseng, J.C.S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO2. Catal. Today 97(2–3), 113–119 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)CrossRefGoogle Scholar
  13. 13.
    S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011)CrossRefGoogle Scholar
  14. 14.
    X. Yang, C. Salzmann, H. Shi, H. Wang, M.L. Green, T. Xiao, The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. J. Phys. Chem. A 112(43), 10784–10789 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Yu. Z., & X. Dong, Black TiO2 nanotube arrays fabricated by electrochemical self-doping and their photoelectrochemical performance. RSC Adv. 8(8), 18992–19000 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian, Z. Wang, Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 5(5), 11712 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Jiang, Y. Zhang, Y. Jiang, Rong, Y. Wang, Y. Wu, J., & C. Pang, Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116(42), 22619–22624 (2012)CrossRefGoogle Scholar
  18. 18.
    W. Wang, Y. Ni, C. Lu, Z. Xu, Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity. RSC Adv. 2(22), 8286–8288 (2012)CrossRefGoogle Scholar
  19. 19.
    S.H.I. Lei, W.E.N.G. Duan, Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J. Environ. Sci. 20(10), 1263–1267 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, H. Gan, G. Zhang, A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172(2–3), 936–943 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li et al., Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J. Hazard. Mater. 175(1–3), 429–438 (2010)Google Scholar
  22. 22.
    F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal. Commun. 10(11), 1510–1513 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 °C. J. Hazard. Mater. 192(1), 150–159 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Harifi, M. Montazer, Fe3+: Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl. Catal. A 473, 104–115 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Zhang, C. Chen, W. Ma, J. Zhao, Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed. 47(50), 9730–9733 (2008)CrossRefGoogle Scholar
  26. 26.
    G. Li, L. Wu, F. Li, P. Xu, D. Zhang, H. Li, Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5(5), 2118–2125 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Su, L. Zhu, P. Geng, G. Chen, Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light. J. Hazard. Mater. 316, 159–168 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Gou, Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng et al., Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chem. Eng. J. 308, 818–826 (2017)CrossRefGoogle Scholar
  29. 29.
    S.B. Yang, D.B. Xu, B.Y. Chen, B.F. Luo, X. Yan, L.S. Xiao, W.D. Shi, Synthesis and visible-light-driven photocatalytic activity of p-n heterojunction Ag2O/NaTaO3 nanotubes. Appl. Surf. Sci. 383, 214–221 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Chu, X. Liu, J. Liu, J. Li, T. Wu, H. Li et al., Synergetic effect of Ag2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO2. Mater. Sci. Eng. B 211, 128–134 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chem. A Eur. J. 17(28), 7777–7780 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Yu, W. Chen, X. Wang, Y. Xu, J. Yu, Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti (IV) and Fe (III) cocatalysts. Appl. Catal. B 187, 163–170 (2016)CrossRefGoogle Scholar
  33. 33.
    W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces 2(8), 2385–2392 (2010)CrossRefGoogle Scholar
  34. 34.
    D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p–n) nanohetero junctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces 5(2), 331–337 (2012)CrossRefGoogle Scholar
  35. 35.
    N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 258(15), 5827–5834 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production. J. Mater. Chem. A 2, 3847–3855 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Kowal, K. Wysocka-Król, M. Kopaczyńska, E. Dworniczek, R. Franiczek, M. Wawrzyńska et al., In situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts. J. Colloid Interface Sci. 362(1), 50–57 (2011)CrossRefGoogle Scholar
  38. 38.
    Y. Cong, M. Chen, T. Xu, Y. Zhang, Q. Wang, Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation. Appl. Catal. B 147, 733–740 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá et al., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B 96(3–4), 239–244 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GujratGujratPakistan
  2. 2.Centre for Advanced Studies in PhysicsGC UniversityLahorePakistan
  3. 3.Department of PhysicsGC UniversityLahorePakistan
  4. 4.Department of PhysicsCOMSATS University IslamabadLahorePakistan

Personalised recommendations