Advertisement

Nonstoichiometric Mesoporous Cu1.90S Nanoparticles Hydrothermally Prepared from a Copper Anthranilato Complex Inhibit Cellulases of Phytopathogenic Fungi

  • Ahmed B. M. IbrahimEmail author
  • Ghada Abd-Elmonsef Mahmoud
Article
  • 25 Downloads

Abstract

A copper sulfide precursor of the general formula Cu(C13H9O2NCl)2(H2O)2 {C13H9O2NCl = 2-(2-chlorophenylamino)benzoate} was synthesized and routinely characterized regarding its CHN content, solution molar conductivity, powder X-ray diffraction (PXRD) pattern, magnetic moment and IR spectroscopic data. Copper sulfide Cu1.90S nanoparticles (CSNPs) were hydrothermally grown from this precursor and thiourea. The NPs were characterized by means of elemental analyses, PXRD and transmission electron microscopy (TEM). Brunauer–Emmett–Teller (BET) surface area measurements assigned mesoporous structure and an average pore diameter of 14.342 nm for the as-prepared NPs. The microbial resistance against common antimicrobial agents and the development of new microbial strains are urging factors for finding alternate potent antimicrobial agents. The as-prepared CSNPs may conquer plant diseases, as they exhibited antifungal efficiency against eleven phytopathogenic fungal isolates with Fusarium oxysporum growth reduction reaching 52.63%. Additionally, these NPs strongly inhibited the cellulase enzyme activity produced by Fusarium camptoceras by 51.54% at 30 °C and also inhibited the enzyme activity produced by Trichoderma harzianum by 55.4% at 40 °C leading to promising usefulness of the as prepared CSNPs in improving the quality and quantity of agricultural crops and protecting them from several plant diseases.

Keywords

Chalcogenide Non-stoichiometric Nanoparticles Mesoporous Phytopathogenic fungi Cellulase enzyme 

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    S. Ravi, C.V.V.M. Gopi, H.J. Kim, Dalton Trans. 45, 12362 (2016)CrossRefGoogle Scholar
  2. 2.
    Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wanga, G. Cao, J. Mater. Chem. A 4, 5505 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Li, F. Xie, W. Li, B.D. Fahlman, M. Chena, W. Li, RSC Adv. 6, 105222 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M.K.H. Leung, S. Yang, Energy Environ. Sci. 10, 593 (2017)CrossRefGoogle Scholar
  5. 5.
    N.R. Kim, J. Choi, H.J. Yoon, M.E. Lee, S.U. Son, H.J. Jin, Y.S. Yun, ACS Sustain. Chem. Eng. 5, 9802 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, ACS Appl. Mater Interfaces 6, 20535 (2014)CrossRefGoogle Scholar
  7. 7.
    D.H. Ha, A.H. Caldwell, M.J. Ward, S. Honrao, K. Mathew, R. Hovden, M.K.A. Koker, D.A. Muller, R.G. Hennig, R.D. Robinson, Nano Lett. 14, 7090 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Roy, S.K. Srivastava, Mater Lett. 61, 1693 (2007)CrossRefGoogle Scholar
  9. 9.
    F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Powder Technol. 198, 267 (2010)CrossRefGoogle Scholar
  10. 10.
    C. Tan, Y. Zhu, R. Lu, P. Xue, C. Bao, X. Liu, Z. Fei, Y. Zha, Mater Chem. Phys. 91, 44 (2005)CrossRefGoogle Scholar
  11. 11.
    Q. Lu, F. Gao, D. Zhao, Nano Lett. 2, 725 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Esmaeili, M. Sabet, M. Salavati-Niasari, Z. Zarghami, S. Bagher, J. Clust. Sci. 27, 351 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Borkow, J. Gabbay, Curr. Chem. Biol. 3, 272 (2009)Google Scholar
  14. 14.
    M. McNeil, A.G. Darvill, S.C. Fry, P. Albersheim, Ann. Rev. Biochem. 53, 625 (1984)CrossRefGoogle Scholar
  15. 15.
    A. De lasHeras, B. Patino, M.L. Podada, M.J. Martinez, C. Vazquez, M.T.G. Jean, J. Appl. Microbiol. 94, 856 (2003)CrossRefGoogle Scholar
  16. 16.
    M.F. Machinandiarena, E.A. Wolski, V. Barrera, G.R. Daleo, A.B. Andreu, Mycopathologia 159, 441 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Stølen, F. Grønvold, E.F. Westrum, J. Chem. Thermodyn. 22, 1035 (1990)CrossRefGoogle Scholar
  18. 18.
    M.M. Kazinets, Sov. Phys. 14, 599 (1970)Google Scholar
  19. 19.
    A. Sharma, P. Piplani, Chem. Biol. Drug Des. 90, 926 (2017)CrossRefGoogle Scholar
  20. 20.
    T.M. Salama, A.H. Ahmed, Z.M. El-Bahy, Microporous Mesoporous Mater. 89, 251 (2006)CrossRefGoogle Scholar
  21. 21.
    L. He, Y. Liu, A. Mustapha, M. Lin, Microbiol. Res. 166, 207 (2011)CrossRefGoogle Scholar
  22. 22.
    C.O. Dimkpa, J.E. McLean, D.W. Britt, A.J. Anderson, Biometals 26, 913 (2013)CrossRefGoogle Scholar
  23. 23.
    S.K. Niture, A. Pant, World J. Microbiol. Biotechnol. 23, 1169 (2007)CrossRefGoogle Scholar
  24. 24.
    V.H. Sunitha, N.D. Devi, C. Srinivas, World J. Agri. Sci. 9, 1 (2013)Google Scholar
  25. 25.
    W. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  26. 26.
    A. Tarushi, C.P. Raptopoulou, V. Psycharis, D.P. Kessissoglou, A.N. Papadopoulos, G. Psomas, J. Inorg. Biochem. 176, 100 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Tarushi, S. Perontsis, A.G. Hatzidimitriou, A.N. Papadopoulos, D.P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 149, 68 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Bull. World Health Organ. 77, 651 (1999)Google Scholar
  29. 29.
    S. Liu, L. Xu, T. Zhang, G. Ren, Z. Yang, Toxicology 267, 172 (2010)CrossRefGoogle Scholar
  30. 30.
    V. Petranovskii, L. Panina, E. Bogomolova, G. Belostotskaya, Proceedings SPIE. 5218, 244 (2003)Google Scholar
  31. 31.
    Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Coll. Surf. A: Physiochem. Eng. Aspects 284, 364 (2006)CrossRefGoogle Scholar
  32. 32.
    R. Usha, E. Prabu, M. Palaniswamy, C.K. Venil, R. Rajendran, Global J. Biotechnol. Biochem. 5, 153 (2010)Google Scholar
  33. 33.
    J.L. Watson, T. Fang, C.O. Dimkpa, D.W. Britt, J.E. McLean, A. Jacobson, A.J. Anderson, Biometals 28, 101 (2015)CrossRefGoogle Scholar
  34. 34.
    G.N. Agrios, Significance of plant diseases, in Plant Pathology, 4th edn., Academic Press, San Diego, 1997Google Scholar
  35. 35.
    N. Sonker, A.K. Pandey, P. Singh, J. Sci. Food Agric. 95, 1932 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Battilani, A. Pietri, T. Bertuzzi, L. Languasco, P. Giorni, Z. Kozakiewicz, J. Food Prot. 66, 633 (2003)CrossRefGoogle Scholar
  37. 37.
    K.G. Sonia, B.S. Chadha, H.S. Saini, Bioresour. Technol. 96, 1561 (2005)CrossRefGoogle Scholar
  38. 38.
    I. Persson, F. Tjerneld, B.B. Hahn-Hagerdal, Process Biochem. 26, 65 (1991)CrossRefGoogle Scholar
  39. 39.
    K. Kathiresan, K. Saravanakumar, R. Anburaj, V. Gomathi, G. Abirami, S.K. Sahu, S. Anandhan, Int. J. Adv. Biotechnol. Res. 2, 382 (2011)Google Scholar
  40. 40.
    A. Di Matteo, D. Bonivento, D. Tsernoglou, L. Federici, F. Cervone, Phytochemistry 67, 528 (2006)CrossRefGoogle Scholar
  41. 41.
    F.I. Garcia-Maceira, A. Di Pietro, M.D. Huertas-Gonzalez, M.C. Ruiz-Roldan, M.I. Roncero, Appl. Environ. Microbiol. 67, 2191 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Mater Lett. 71, 114 (2012)CrossRefGoogle Scholar
  43. 43.
    A. Llorens, E. Lloret, P. Picouet, A. Fernandez, Int. J. Food Microbiol. 158, 113 (2012)CrossRefGoogle Scholar
  44. 44.
    F.A. Schinner, R. Niederbacher, I. Neuwinger, Plant Soil 57, 85 (1980)CrossRefGoogle Scholar
  45. 45.
    G. Geigera, H. Brandl, G. Furrer, R. Schulina, Soil Biol. Biochem. 30, 1537 (1998)CrossRefGoogle Scholar
  46. 46.
    P. Karimi, R.A. Khavari-Nejad, V. Niknam, F. Ghahremaninejad, F. Najafi, Sci. World J. 2012, 615 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed B. M. Ibrahim
    • 1
    Email author
  • Ghada Abd-Elmonsef Mahmoud
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Department of Botany & Microbiology, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations