Advertisement

Interfacial In Situ Polymerization of Layered-Silicate/Poly (Hexamethylene Isophthalamide) Nanocomposites

  • D. Pakdaman Gohari
  • Mohammad Reza KalaeeEmail author
  • Alireza Sharif
Article
  • 21 Downloads

Abstract

In this work Poly (hexamethylene isophthalamide) (PA 6I) was synthesized via interface step polymerization at room temperature for the first time, here. Layered silicates were used in order to fabricate PA 6I nanocomposites by in-situ polymerization. Thermal, mechanical and morphological of obtained nanocomposites were examined. The dispersion effect of silicate layers in the matrix was studied by means of XRD and FE-SEM. The incorporation of layered silicates in PA 6I leads to a significant improvement in the mechanical properties of the resulting nanocomposites. The thermogravimetric analysis results showed that layered silicate incorporation enhances the thermal resistance of PA 6I nanocomposites. Improvements in thermal degradation properties, while Young’s moduli have also been modified.

Keywords

Interfacial polymerization Nanocomposite Thermal properties Polyamide 

Notes

References

  1. 1.
    S.V. Levchik, E.D. Weil, M. Lewin, Polym. Int. 48, 532 (1999)CrossRefGoogle Scholar
  2. 2.
    A. Douka, S. Vouyiouka, L. Papaspyridi, C.D. Papaspyrides, Prog. Polym. Sci. 79, 1 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Bisoia, A. Kumar, M. Venkat, P. Susanta Banerjeea, Memb. Sci. 522, 77 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Winnacker, B. Rieger, Macromol. Rap. Commun. Banner 37, 1391 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Wang, Y. Zhang, Chin. Polym. Sci. 28, 467 (2010)CrossRefGoogle Scholar
  6. 6.
    G.Z. Zhang, H. Yoshida, T. Kawai, Thermochim. Acta 416, 79 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Zhang, Y. Zhou, Y. Li, X. Wang, Sh. Longa, J. Yang, RSC Adv. 62, (2015)Google Scholar
  8. 8.
    W. Wang, X.G. Zhang, J. Zhang, Ch. Yan, Y. Zhu, X. Wan, Polym. Chem. 54, 2050 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Dewilde, T. Hoogerstraete, W. Dehaen, K. Binnemans, ACS Sustain. Chem. Eng. 6, 1362 (2018)CrossRefGoogle Scholar
  10. 10.
    E.D. Harvey, F.J. Hybart, Polymer 12, 11711 (1976)Google Scholar
  11. 11.
    Y. Liu, J. Song, Y. Xu, F. Cai, Therm. Anal. Calorim. 107, 1191 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Wang, X. Wang, R. Li, B. Liu, ,E. Wang, Y. Zhang, Appl. Polym. 114, 2036 (2009)CrossRefGoogle Scholar
  13. 13.
    S.S. Ray, M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003)CrossRefGoogle Scholar
  14. 14.
    S. Yu, Mater. Process. Technol. 192, 410 (2007)CrossRefGoogle Scholar
  15. 15.
    Q.X. Liu, Wu, Macromol. Mater. Eng. 287, 180 (2002)CrossRefGoogle Scholar
  16. 16.
    G.P. Shen, Y.-B. Simon, Cheng, Polymer 43, 4251 (2002)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, L.S. Loo, Polymer 50, 2643 (2009)CrossRefGoogle Scholar
  18. 18.
    R.A. Vaia, H. Ishii, E.P. Giannelis, Chem. Mater. 5, 1694 (1993)CrossRefGoogle Scholar
  19. 19.
    C. Zeng, L.J. Lee, Macromolecules 34, 4098 (2001)CrossRefGoogle Scholar
  20. 20.
    A.K. Nikolaidis, D.S. Achilias, G.P. Karayannidis, Indus. Eng. Chem. Res. 50, 571 (2010)CrossRefGoogle Scholar
  21. 21.
    Q. Zhao, E.T. Samulski, Macromol. 38, 7967–7797 (2005)CrossRefGoogle Scholar
  22. 22.
    Z. Xu, Ch. Gao, Macromolecules 43, 6716 (2010)CrossRefGoogle Scholar
  23. 23.
    Z.S. Kalkan, L.A. Goettler, Polym. Eng. Sci. 49, 1491 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Mohamadi, N. Sharifi Sanjani, N.T. Qazvini, Mo. Barari, Nano Sci. Nanotechnol. 9, 3959 (2009)CrossRefGoogle Scholar
  25. 25.
    C.P. McAdam, N.E. Hudson, J.J. Liggat, R.A. Pethrick, Appl. Polym. Sci. 108, 2242 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Tarameshlou, et al. Polym. Compos. 28, 733 (2007)CrossRefGoogle Scholar
  27. 27.
    Z.S. Kalkan-Sevinc, L.A. Goettler, Polym. Eng. Sci. 52, 2410 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Zulfiqar, M. Ishaq, M. Ilyas, Sarwar, Adv. Polym. Technol. 4, 300 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Sadeghi Nasrabadi, M.R. Kalaee, M. Abdouss, M. Sheydaei, S. Mazinani, J. Inorg. Organomet. Polym. 23, 950 (2013)CrossRefGoogle Scholar
  30. 30.
    Z. Wu, Appl. Polym. Sci. 83, 2403 (2002)CrossRefGoogle Scholar
  31. 31.
    P. Maiti, M. Okamoto, Macromol. Mater. Eng. 288, 440 (2003)CrossRefGoogle Scholar
  32. 32.
    D.M. Lincoln, Polymer 42, 1621 (2001)CrossRefGoogle Scholar
  33. 33.
    S. Pavlidou, C.D. Papaspyrides, Prog. Polym. Sci. 33, 1119 (2008)CrossRefGoogle Scholar
  34. 34.
    R.J.O. Becker, G.P. Varley, Simon, Eur. Polym. 40, 187 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Zhu, Chem. Mater. 13, 4649 (2001)CrossRefGoogle Scholar
  36. 36.
    G. Gorrasi, Polymer, 44, 2271 (2003)CrossRefGoogle Scholar
  37. 37.
    D.J. Suh, Y.T. Lim, O.O. Park, Polymer. 41, 8557 (2000)CrossRefGoogle Scholar
  38. 38.
    J.S. Shelley, P.T. Mather, K.L. DeVries, Polymer. 42, 5849 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. Pakdaman Gohari
    • 1
  • Mohammad Reza Kalaee
    • 1
    Email author
  • Alireza Sharif
    • 2
  1. 1.Department of Chemical and Polymer Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Polymer Engineering Group, Department of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations