Nanoreactor with Core–Shell Architectures Used as Spatiotemporal Compartments for “Undisturbed” Tandem Catalysis

  • Wenjing Wei
  • Shuping Wu
  • Xiaojuan Shen
  • Maiyong Zhu
  • Songjun LiEmail author


The study is aimed at the present challenge in tandem catalysis, addressing how to achieve tandem catalytic ability and meantime to avoid a mutual engagement between the tandem processes. This objective was met by constituting a nanoreactor with bio-inspired compartments made of core-and-shell architectures. The core-and-shell architectures allowed the nanoreactor to spatiotemporally separate the tandem catalytic processes from each other, in virtue of the restriction from mass transfer and the radial distribution of reaction loci. The shell in this nanoreactor admitted a precursor reaction while the core was responsible the following reaction. There was no mutual engagement in the tandem processes, due to the spatiotemporally-driven sequential catalysis in the nanoreactor. In this way, this nanoreactor demonstrated the “undisturbed” tandem catalytic ability. Differing from reported nanoreactors and bi-functional catalysts which often involve a mutual competition and even cross-reactions between the tandem processes, this nanoreactor may partition the tandem catalytic processes and avoid the mutual engagement. The constitution of this nanoreactor suggests a prospect to develop “undisturbed” tandem catalysts for complicated catalytic processes.


Nanoreactors Bio-inspired compartmentalization Undisturbed tandem catalysis Core-and-shell architectures 



The authors want to express their gratitude to the National Natural Science Foundation of China (Nos. 51473070 and 51808263). Thanks also should be expressed to the Jiangsu Province for support under the innovation-entrepreneurship program (Surencaiban [2015]26).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no involvement of any conflict of interest regarding the publication of this article.

Supplementary material

10904_2019_1087_MOESM1_ESM.doc (234 kb)
Supplementary material 1 (DOC 234 KB)


  1. 1.
    J. Su, C. Xie, C. Chen, Y. Yu, G. Kennedy, G.A. Somorjai, P. Yang, J. Am. Chem. Soc. 138, 11568 (2016)CrossRefGoogle Scholar
  2. 2.
    P.V. Dau, S.M. Cohen, Inorg. Chem. 54, 3134 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Wang, M. Zhu, X. Shen, S. Li, Chem. Eur. J. 21, 7532 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Ueda, H. Ito, D. Fujita, M. Fujita, J. Am. Chem. Soc. 139, 6090 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Li, Y. Luo, M. Whitcombe, S.A. Piletsky, J. Mater. Chem. A 1, 15102 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Rudroff, M.D. Mihovilovic, H. Groger, R. Snajdrova, H. Iding, U.T. Bornscheuer, Nat. Catal. 1, 12 (2018)CrossRefGoogle Scholar
  7. 7.
    C.M. Hong, R.G. Bergman, K.N. Raymond, F.D. Toste, Acc. Chem. Res. 51, 2447 (2018)CrossRefGoogle Scholar
  8. 8.
    B.C. Buddingh, J.C.M. van Hest, Acc. Chem. Res. 50, 769 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Schmidt, K. Castiglione, R. Kourist, Chem. Eur. J. 24, 1755 (2018)CrossRefGoogle Scholar
  10. 10.
    I. Wheeldon, S.D. Minteer, S. Banta, S.C. Barton, P. Atanassov, M. Sigman, Nat. Chem. 8, 299 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Tan, S. Guo, N.D. Dinh, R. Luo, L. Jin, C.H. Chen, Nat. Commun. 8, n663 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Wei, T. Zhou, S. Wu, X. Shen, M. Zhu, S. Li, RSC Adv. 8, 1610 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Yang, L. Fu, L. Wei, J. Liang, B.P. Binks, J. Am. Chem. Soc. 2015 137, 1362 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Xue, G. Zhang, X. Zhang, H. Yang, Chem. Commun. 54, 13014 (2018)CrossRefGoogle Scholar
  15. 15.
    J. Lu, J. Dimroth, M. Weck, J. Am. Chem. Soc. 137, 12984 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 127, 9674 (2005)CrossRefGoogle Scholar
  17. 17.
    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B 158, 129 (2014)CrossRefGoogle Scholar
  18. 18.
    L.C. Lee, J. Lu, M. Weck, C.W. Jones, ACS Catal. 6, 784 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, H. Lu, P.F. Xu, Acc. Chem. Res. 48, 1832 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Filice, J.M. Palomo, ACS Catal. 4, 1588 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Zuo, W. Wei, Q. Zhou, S. Wu, S. Li, ChemistrySelect 2, 6149 (2017)CrossRefGoogle Scholar
  22. 22.
    I.A. Smellie, J.K.D. Aldred, B. Bower, A. Cochrane, L. Macfarlane, H.B. McCarron, R. O’Hara, I.L.J. Patterson, M.I. Thomson, J.M. Walker, J. Chem. Educ. 94, 112 (2017)CrossRefGoogle Scholar
  23. 23.
    R.E. Morsi, R.A. Elsalamony, New J. Chem. 40, 2927 (2016)CrossRefGoogle Scholar
  24. 24.
    D. Schwarz, J. Weber, J. Colloid Interface Sci. 498, 335 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, M. Zhu, S. Li, J. Mater. Chem. A 2, 6834 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Zheng, R. Luo, M. Zhu, S. Li, ChemCatChem 7, 814 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Wei, M. Zhu, X. Shen, S. Wu, S. Li, RSC Adv. 6, 42869 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Han, X. Yuan, M. Zhu, S. Li, M. Whitcombe, S.A. Piletsky, Adv. Funct. Mater. 24, 4996 (2014)CrossRefGoogle Scholar
  29. 29.
    B. Peng, X. Yuan, M. Zhu, S. Li, Polym. Chem. 5, 562 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, Y. Chen, Sci. Rep. 5, n12555 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Li, Y. Ge, A. Tiwari, S. Cao, Small 6, 2453 (2010)CrossRefGoogle Scholar
  32. 32.
    R. Luo, M. Zhu, X. Yuan, S. Li, RSC Adv. 5, 5598 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Wei
    • 1
  • Shuping Wu
    • 1
  • Xiaojuan Shen
    • 1
  • Maiyong Zhu
    • 1
  • Songjun Li
    • 1
    Email author
  1. 1.Research School of Polymeric Materials, School of Materials Science & EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations