Advertisement

Synthesis of Large-Pore Silica Microspheres Using Dodecylamine as a Catalyst, Template and Porogen Agent

  • Lingping Cheng
  • Jianfeng Cai
  • Yanxiong KeEmail author
Communication
  • 68 Downloads

Abstract

This paper reports a strategy combing a modified Stöber method and a post-hydrothermal treatment for the fabricating of silica microspheres with large pores. Dodecylamine (DDA), used as a catalyst, template and porogen agent, plays an important role in controlling both the particle morphology and the pore expansion. By adjusting the concentration of DDA (20, 40 and 80 mmol/L) and the temperature of hydrothermal treatment (80–140 °C), the pore size ranging from 3.5 to 16 nm could be obtained. The synthesized sub-2 µm silica spheres were modified with dimethyloctadecylchlorosilane (C18) and successfully applied for the separation of aromatic compounds in high-performance liquid chromatography (HPLC). The silica may be a good candidate as HPLC packing materials.

Keywords

Dodecylamine Sol–gel process Mesoporous silica spheres HPLC 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21375038).

References

  1. 1.
    F. Mirante, N. Gomes, L.C. Branco, L. Cunha-Silva, P.L. Almeida, M. Pillinger, S. Gago, C.M. Granadeiro, S.S. Balula, Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous Mesoporous Mater. 275, 163–171 (2019)CrossRefGoogle Scholar
  2. 2.
    I. Saptiama, Y.V. Kaneti, H. Oveisi, Y. Suzuki, K. Tsuchiya, K. Takai, T. Sakae, S. Pradhan, M.S.A. Hossain, N. Fukumitsu, K. Ariga, Y. Yamauchi, Molybdenum adsorption properties of alumina-embedded mesoporous silica for medical radioisotope production. Bull. Chem. Soc. Jpn. 91, 195–200 (2018)CrossRefGoogle Scholar
  3. 3.
    D.L. Ramasamy, V. Puhakka, S. Iftekhar, A. Wojtuś, E. Repo, S. Ben Hammouda, E. Iakovleva, M. Sillanpää, N- and O- ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): understanding the significance of physical modification and conditioning of the polymer. J. Hazard. Mater. 348, 84–91 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Giret, Y. Hu, N. Masoumifard, J.-F. Boulanger, J. Estelle, F. Kleitz, D. Larivière, Selective separation and preconcentration of scandium with mesoporous silica. ACS Appl. Mater. Interfaces 10, 448–457 (2018)CrossRefGoogle Scholar
  5. 5.
    K.K. Unger, R. Skudas, M.M. Schulte, Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J. Chromatogr. A 1184, 393–415 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Ahmed, H. Ritchie, P. Myers, H. Zhang, One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv. Mater. 24, 6042–6048 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Grün, I. Lauer, K.K. Unger, The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9, 254–257 (1997)CrossRefGoogle Scholar
  8. 8.
    K. Kosuge, P.S. Singh, Mesoporous silica spheres via 1-alkylamine templating route. Microporous Mesoporous Mater. 44–45, 139–145 (2001)CrossRefGoogle Scholar
  9. 9.
    P.T. Tanev, T.J. Pinnavaia, a neutral templating route to mesoporous molecular sieves. Science 267, 865 (1995)CrossRefGoogle Scholar
  10. 10.
    T.R. Pauly, T.J. Pinnavaia, Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures. Chem. Mater. 13, 987–993 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Yu, L. Zhao, B. Cheng, Preparation of monodispersed microporous SiO2 microspheres with high specific surface area using dodecylamine as a hydrolysis catalyst. J. Solid State Chem. 179, 226–232 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Yoshikazu, Y. Masanori, A. Eiichi, A. Sadao, T. Shunsuke, Preparation and adsorption properties of thiol-functionalized mesoporous silica microspheres. Ind. Eng. Chem. Res. 48, 938–943 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Zhao, Y. Xin, H. Wang, Z. Zhang, S. Liu, A comparison of the formation of SiO2 particles under the catalysis of dodecylamine and ammonia solutions. J. Inorg. Organomet. Polym. 21, 925–928 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Shimogaki, H. Tokoro, M. Tabuchi, N. Koike, Y. Yamashina, M. Takahashi, Large-scale synthesis of monodisperse microporous silica nanoparticles by gradual injection of reactants. J. Sol Gel Sci. Technol. 74, 109–113 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Liu, H. Zhao, An in-depth investigation on the formation of nanoporous silica microspheres in diluted dodecylamine solutions. J. Exp. Nanosci. 11, 490–499 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Hu, X. Chen, N. Zhao, Y. Li, C. Mao, Fabrication and characterization of dodecylamine derived monodispersed mesoporous bioactive glass sub-micron spheres. J. Sol Gel Sci. Technol. 69, 9–16 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Sayari, Y. Yang, M. Kruk, M. Jaroniec, Expanding the pore size of MCM-41 silicas: use of amines as expanders in direct synthesis and postsynthesis procedures. J. Phys. Chem. B 103, 3651–3658 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Sayari, Unprecedented expansion of the pore size and volume of periodic mesoporous silica. Angew. Chem. Int. Ed. 39, 2920–2922 (2000)CrossRefGoogle Scholar
  19. 19.
    Q. Liu, L.T. Wang, S.Q. Dong, Z.X. Zhang, L. Zhao, Preparation and characterization of SiO2/SiO2 core–shell microspheres as RP-HPLC stationary phase. J. Inorg. Organomet. Polym. 21, 941–945 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations