Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide

  • Petr PrausEmail author
  • Jaroslav Lang
  • Alexandr Martaus
  • Ladislav Svoboda
  • Vlastimil Matějka
  • Martin Kormunda
  • Marcel Šihor
  • Martin Reli
  • Kamila Kočí


The composites of BiVO4 and g-C3N4 (BiVO4/g-C3N4) were synthesised by the calcination of a mixture of monoclinic BiVO4 and bulk g-C3N4 at 300 °C for 4 h. Both components were previously prepared by the precipitation of Bi(NO3)3 with NH4VO3 and annealing of melamine. X-ray photoelectron spectroscopy (XPS) identified the presence of C–O and C=O bonds as well as metal nitrides which confirmed the formation of a heterojunction between BiVO4 and g-C3N4. The heterojunction was also indicated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy. The band gap energies were determined at 2.42–2.46 eV of BiVO4 and 2.75–2.82 eV of bulk g-C3N4. The specific surface area was 23–28 m2 g−1 of the composites and 6 m2 g−1 and 35 m2 g−1 of pure BiVO4 and g-C3N4, respectively. The photocatalytic activity of the composites was investigated by the decomposition of Acid Orange 7 (AO7) and nitrous oxide. In case of AO7, the BiVO4/g-C3N4 (1:3) composite was the most active one and the main role in the reaction was played by photoinduced holes forming hydroxyl radicals. At the decomposition of N2O, the most important species were the photoinduced electrons and the BiVO4/g-C3N4 (1:1) composite was the most active photocatalyst.


BiVO4 G-C3N4 Composites Heterojunction Photocatalysis 



This work was supported by the Czech Science Foundation (project No. 16-10527S), the EU structural funding in Operational Program Research, Development and Education, Project No. CZ.02.1.01/0.0/0.0/16_019/0000853 “Institute of Environmental Technology—Excellent research” and by VŠB-Technical University of Ostrava (Project No. SP 2019/142). The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

Supplementary material

10904_2019_1085_MOESM1_ESM.jpg (792 kb)
Figure S1 Photoluminescence spectrum of BiVO4 (JPG 791 KB)
10904_2019_1085_MOESM2_ESM.jpg (797 kb)
Figure S2 Calculated edge potentials for g-C3N4 and BiVO4 (JPG 797 KB)


  1. 1.
    K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, Observation of crystalline C3N4. Phys. Rev. B 49(7), 5034–5037 (1994). Google Scholar
  2. 2.
    E. Kroke, Novel group 14 nitrides. Coord. Chem. Rev. 248(5–6), 493–532 (2004). Google Scholar
  3. 3.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). Google Scholar
  4. 4.
    P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 193, 438–446 (2017). Google Scholar
  5. 5.
    G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). Google Scholar
  6. 6.
    J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). Google Scholar
  7. 7.
    H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Mesoporous graphitic carbon nitride materials: synthesis and modifications. Res. Chem. Intermed. 42(5), 3979–3998 (2015). Google Scholar
  8. 8.
    L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017). Google Scholar
  9. 9.
    L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11(23), 3305–3328 (2016). Google Scholar
  10. 10.
    W.-J. Ong (2017) 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater. Google Scholar
  11. 11.
    J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). Google Scholar
  12. 12.
    D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017). Google Scholar
  13. 13.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). Google Scholar
  14. 14.
    G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016). Google Scholar
  15. 15.
    S. Kumar, S. Karthikeyan, A. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2), 74 (2018). Google Scholar
  16. 16.
    K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017). Google Scholar
  17. 17.
    M. Reli, P. Huo, M. Sihor, N. Ambrozova, I. Troppova, L. Matejova, J. Lang, L. Svoboda, P. Kustrowski, M. Ritz, P. Praus, K. Koci, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120(43), 8564–8573 (2016). Google Scholar
  18. 18.
    P. Praus, L. Svoboda, R. Dvorský, M. Reli, M. Kormunda, P. Mančík, Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3 N 4. Ceram. Int. 43(16), 13581–13591 (2017). Google Scholar
  19. 19.
    M. Reli, L. Svoboda, M. Šihor, I. Troppová, J. Pavlovský, P. Praus, K. Kočí, Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. (2017). Google Scholar
  20. 20.
    P. Praus, L. Svoboda, R. Dvorský, J.L. Faria, C.G. Silva, M. Reli, Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 44(4), 3837–3846 (2018). Google Scholar
  21. 21.
    J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 43(1), 301–307 (2017). Google Scholar
  22. 22.
    M. Ou, Q. Zhong, S. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). Google Scholar
  23. 23.
    J. Zhang, F. Ren, M. Deng, Y. Wang, Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. Phys. Chem. Chem. Phys. 17(15), 10218–10226 (2015). Google Scholar
  24. 24.
    N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 4297–4307 (2015). Google Scholar
  25. 25.
    R. Venkatesan, S. Velumani, A. Kassiba, Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135(2–3), 842–848 (2012). Google Scholar
  26. 26.
    A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009). Google Scholar
  27. 27.
    S. Kunduz, G.S. Pozan Soylu, Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep. Purif. Technol. 141, 221–228 (2015). Google Scholar
  28. 28.
    J. Liu, H. Wang, S. Wang, H. Yan, Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. 104(1–2), 36–39 (2003). Google Scholar
  29. 29.
    H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Mater. Chem. Phys. 115(1), 9–13 (2009). Google Scholar
  30. 30.
    W. Ma, Z. Li, W. Liu, Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41(3), 4340–4347 (2015). Google Scholar
  31. 31.
    M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin, Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 172(1), 338–344 (2009). Google Scholar
  32. 32.
    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173(1–3), 194–199 (2010). Google Scholar
  33. 33.
    U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 14(3), 293–298 (2012). Google Scholar
  34. 34.
    S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113(28), 11980–11983 (2009). Google Scholar
  35. 35.
    J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Formation and control of N2O in nitric acid production. Appl. Catal. B 44(2), 117–151 (2003). Google Scholar
  36. 36.
    K. Kočí, S. Krejčíková, O. Šolcová, L. Obalová, Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 191(1), 134–137 (2012). Google Scholar
  37. 37.
    S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 31, 1–35 (2017). Google Scholar
  38. 38.
    B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016). Google Scholar
  39. 39.
    L. Ming, H. Yue, L. Xu, F. Chen, Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2(45), 19145–19149 (2014). Google Scholar
  40. 40.
    O. Man, Q. Zhong, J. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). Google Scholar
  41. 41.
    I. Troppová, M. Šihor, M. Reli, M. Ritz, P. Praus, K. Kočí, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 430, 335–347 (2018). Google Scholar
  42. 42.
    J. Lang, L. Matějová, I. Troppová, L. Čapek, J. Endres, S. Daniš, Novel synthesis of ZrxTi1–xOn mixed oxides using titanyl sulphate and pressurized hot and supercritical fluids, and their photocatalytic comparison with sol-gel prepared equivalents. Mater. Res. Bull. 95, 95–103 (2017). Google Scholar
  43. 43.
    H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang, T. Xie, Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 116(3), 2425–2430 (2012). Google Scholar
  44. 44.
    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999). Google Scholar
  45. 45.
    P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014). Google Scholar
  46. 46.
    I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). Google Scholar
  47. 47.
    T. Komatsu, The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 202(1), 19–25 (2001)Google Scholar
  48. 48.
    R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A Mol Biomol Spectrosc 61(5), 829–834 (2005). Google Scholar
  49. 49.
    X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125(1–2), 59–65 (2011). Google Scholar
  50. 50.
    J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80, 213–221 (2014). Google Scholar
  51. 51.
    L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016). Google Scholar
  52. 52.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893 (2008). Google Scholar
  53. 53.
    A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings. Surf. Sci. 601(4), 1153–1159 (2007). Google Scholar
  54. 54.
    G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135(2–3), 167–175 (2004). Google Scholar
  55. 55.
    E.A. Abdullah, A.H. Abdullah, Z. Zainal, M.Z. Hussein, T.K. Ban (2012) Synthesis and characterisation of Penta-Bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. e-J. Chem. 9 (4).
  56. 56.
    M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). Google Scholar
  57. 57.
    L. Svoboda, P. Praus, M.J. Lima, M.J. Sampaio, D. Matýsek, M. Ritz, R. Dvorský, J.L. Faria, C.G. Silva, Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 100, 322–332 (2018). Google Scholar
  58. 58.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966). Google Scholar
  59. 59.
    Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013). Google Scholar
  60. 60.
    D.-K. Ma, M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, S.-M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). Google Scholar
  61. 61.
    P.M. Wood, The potential diagram for oxygen at pH 7. Biochem. J. 253(1), 287–289 (1988). Google Scholar
  62. 62.
    K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 9(7), 1969–1982 (2016). Google Scholar
  63. 63.
    M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20(1), 88–110 (2014). Google Scholar
  64. 64.
    X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 193–194, 290–295 (2012). Google Scholar
  65. 65.
    N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7), 3718–3723 (2012). Google Scholar
  66. 66.
    J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts. Small Methods 1(5), 1700080 (2017). Google Scholar
  67. 67.
    A. Kudo, H. Nagayoshi, Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor. Catal. Lett. 52, 109–111 (1998)Google Scholar
  68. 68.
    Z. Zhang, M. Wang, W. Cui, H. Sui, Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 7(14), 8167–8177 (2017). Google Scholar
  69. 69.
    M. Ou, Q. Zhong, S. Zhang, L. Yu, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloy. Compd. 626, 401–409 (2015). Google Scholar
  70. 70.
    J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryVŠB-Technical University of OstravaOstravaCzech Republic
  2. 2.Institute of Environmental TechnologyVŠB-Technical University of OstravaOstravaCzech Republic
  3. 3.Faculty of ScienceJ. E. Purkyně UniversityÚstí nad LabemCzech Republic

Personalised recommendations