Advertisement

Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide

  • Petr PrausEmail author
  • Jaroslav Lang
  • Alexandr Martaus
  • Ladislav Svoboda
  • Vlastimil Matějka
  • Martin Kormunda
  • Marcel Šihor
  • Martin Reli
  • Kamila Kočí
Article
  • 152 Downloads

Abstract

The composites of BiVO4 and g-C3N4 (BiVO4/g-C3N4) were synthesised by the calcination of a mixture of monoclinic BiVO4 and bulk g-C3N4 at 300 °C for 4 h. Both components were previously prepared by the precipitation of Bi(NO3)3 with NH4VO3 and annealing of melamine. X-ray photoelectron spectroscopy (XPS) identified the presence of C–O and C=O bonds as well as metal nitrides which confirmed the formation of a heterojunction between BiVO4 and g-C3N4. The heterojunction was also indicated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy. The band gap energies were determined at 2.42–2.46 eV of BiVO4 and 2.75–2.82 eV of bulk g-C3N4. The specific surface area was 23–28 m2 g−1 of the composites and 6 m2 g−1 and 35 m2 g−1 of pure BiVO4 and g-C3N4, respectively. The photocatalytic activity of the composites was investigated by the decomposition of Acid Orange 7 (AO7) and nitrous oxide. In case of AO7, the BiVO4/g-C3N4 (1:3) composite was the most active one and the main role in the reaction was played by photoinduced holes forming hydroxyl radicals. At the decomposition of N2O, the most important species were the photoinduced electrons and the BiVO4/g-C3N4 (1:1) composite was the most active photocatalyst.

Keywords

BiVO4 G-C3N4 Composites Heterojunction Photocatalysis 

Notes

Acknowledgements

This work was supported by the Czech Science Foundation (project No. 16-10527S), the EU structural funding in Operational Program Research, Development and Education, Project No. CZ.02.1.01/0.0/0.0/16_019/0000853 “Institute of Environmental Technology—Excellent research” and by VŠB-Technical University of Ostrava (Project No. SP 2019/142). The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

Supplementary material

10904_2019_1085_MOESM1_ESM.jpg (792 kb)
Figure S1 Photoluminescence spectrum of BiVO4 (JPG 791 KB)
10904_2019_1085_MOESM2_ESM.jpg (797 kb)
Figure S2 Calculated edge potentials for g-C3N4 and BiVO4 (JPG 797 KB)

References

  1. 1.
    K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, Observation of crystalline C3N4. Phys. Rev. B 49(7), 5034–5037 (1994).  https://doi.org/10.1103/PhysRevB.49.5034 Google Scholar
  2. 2.
    E. Kroke, Novel group 14 nitrides. Coord. Chem. Rev. 248(5–6), 493–532 (2004).  https://doi.org/10.1016/j.ccr.2004.02.001 Google Scholar
  3. 3.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009).  https://doi.org/10.1038/nmat2317 Google Scholar
  4. 4.
    P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 193, 438–446 (2017).  https://doi.org/10.1016/j.matchemphys.2017.03.008 Google Scholar
  5. 5.
    G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014).  https://doi.org/10.1016/j.jphotochemrev.2014.04.002 Google Scholar
  6. 6.
    J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017).  https://doi.org/10.1016/j.apsusc.2016.07.030 Google Scholar
  7. 7.
    H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Mesoporous graphitic carbon nitride materials: synthesis and modifications. Res. Chem. Intermed. 42(5), 3979–3998 (2015).  https://doi.org/10.1007/s11164-015-2294-9 Google Scholar
  8. 8.
    L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017).  https://doi.org/10.1016/j.apcatb.2017.06.003 Google Scholar
  9. 9.
    L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11(23), 3305–3328 (2016).  https://doi.org/10.1002/asia.201601178 Google Scholar
  10. 10.
    W.-J. Ong (2017) 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater.  https://doi.org/10.3389/fmats.2017.00011 Google Scholar
  11. 11.
    J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018).  https://doi.org/10.1002/aenm.201701503 Google Scholar
  12. 12.
    D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017).  https://doi.org/10.1016/j.apcatb.2017.01.061 Google Scholar
  13. 13.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015).  https://doi.org/10.1002/adma.201500033 Google Scholar
  14. 14.
    G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016).  https://doi.org/10.1016/j.apcatb.2016.05.052 Google Scholar
  15. 15.
    S. Kumar, S. Karthikeyan, A. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2), 74 (2018).  https://doi.org/10.3390/catal8020074 Google Scholar
  16. 16.
    K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017).  https://doi.org/10.1016/j.apsusc.2016.11.242 Google Scholar
  17. 17.
    M. Reli, P. Huo, M. Sihor, N. Ambrozova, I. Troppova, L. Matejova, J. Lang, L. Svoboda, P. Kustrowski, M. Ritz, P. Praus, K. Koci, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120(43), 8564–8573 (2016).  https://doi.org/10.1021/acs.jpca.6b07236 Google Scholar
  18. 18.
    P. Praus, L. Svoboda, R. Dvorský, M. Reli, M. Kormunda, P. Mančík, Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3 N 4. Ceram. Int. 43(16), 13581–13591 (2017).  https://doi.org/10.1016/j.ceramint.2017.07.067 Google Scholar
  19. 19.
    M. Reli, L. Svoboda, M. Šihor, I. Troppová, J. Pavlovský, P. Praus, K. Kočí, Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. (2017).  https://doi.org/10.1007/s11356-017-0723-6 Google Scholar
  20. 20.
    P. Praus, L. Svoboda, R. Dvorský, J.L. Faria, C.G. Silva, M. Reli, Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 44(4), 3837–3846 (2018).  https://doi.org/10.1016/j.ceramint.2017.11.170 Google Scholar
  21. 21.
    J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 43(1), 301–307 (2017).  https://doi.org/10.1016/j.ceramint.2016.09.156 Google Scholar
  22. 22.
    M. Ou, Q. Zhong, S. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014).  https://doi.org/10.1007/s10971-014-3454-x Google Scholar
  23. 23.
    J. Zhang, F. Ren, M. Deng, Y. Wang, Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. Phys. Chem. Chem. Phys. 17(15), 10218–10226 (2015).  https://doi.org/10.1039/c4cp06089j Google Scholar
  24. 24.
    N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 4297–4307 (2015).  https://doi.org/10.1039/c4dt03905j Google Scholar
  25. 25.
    R. Venkatesan, S. Velumani, A. Kassiba, Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135(2–3), 842–848 (2012).  https://doi.org/10.1016/j.matchemphys.2012.05.068 Google Scholar
  26. 26.
    A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009).  https://doi.org/10.1016/j.matlet.2009.06.013 Google Scholar
  27. 27.
    S. Kunduz, G.S. Pozan Soylu, Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep. Purif. Technol. 141, 221–228 (2015).  https://doi.org/10.1016/j.seppur.2014.11.036 Google Scholar
  28. 28.
    J. Liu, H. Wang, S. Wang, H. Yan, Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. 104(1–2), 36–39 (2003).  https://doi.org/10.1016/s0921-5107(03)00264-2 Google Scholar
  29. 29.
    H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Mater. Chem. Phys. 115(1), 9–13 (2009).  https://doi.org/10.1016/j.matchemphys.2009.01.014 Google Scholar
  30. 30.
    W. Ma, Z. Li, W. Liu, Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41(3), 4340–4347 (2015).  https://doi.org/10.1016/j.ceramint.2014.11.123 Google Scholar
  31. 31.
    M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin, Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 172(1), 338–344 (2009).  https://doi.org/10.1016/j.jhazmat.2009.07.017 Google Scholar
  32. 32.
    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173(1–3), 194–199 (2010).  https://doi.org/10.1016/j.jhazmat.2009.08.068 Google Scholar
  33. 33.
    U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 14(3), 293–298 (2012).  https://doi.org/10.1016/j.solidstatesciences.2011.12.008 Google Scholar
  34. 34.
    S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113(28), 11980–11983 (2009).  https://doi.org/10.1021/jp903757x Google Scholar
  35. 35.
    J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Formation and control of N2O in nitric acid production. Appl. Catal. B 44(2), 117–151 (2003).  https://doi.org/10.1016/s0926-3373(03)00026-2 Google Scholar
  36. 36.
    K. Kočí, S. Krejčíková, O. Šolcová, L. Obalová, Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 191(1), 134–137 (2012).  https://doi.org/10.1016/j.cattod.2012.01.021 Google Scholar
  37. 37.
    S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 31, 1–35 (2017).  https://doi.org/10.1016/j.jphotochemrev.2017.01.005 Google Scholar
  38. 38.
    B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016).  https://doi.org/10.1016/j.cep.2016.08.016 Google Scholar
  39. 39.
    L. Ming, H. Yue, L. Xu, F. Chen, Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2(45), 19145–19149 (2014).  https://doi.org/10.1039/C4TA04041D Google Scholar
  40. 40.
    O. Man, Q. Zhong, J. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014).  https://doi.org/10.1007/s10971-014-3454-x) Google Scholar
  41. 41.
    I. Troppová, M. Šihor, M. Reli, M. Ritz, P. Praus, K. Kočí, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 430, 335–347 (2018).  https://doi.org/10.1016/j.apsusc.2017.06.299 Google Scholar
  42. 42.
    J. Lang, L. Matějová, I. Troppová, L. Čapek, J. Endres, S. Daniš, Novel synthesis of ZrxTi1–xOn mixed oxides using titanyl sulphate and pressurized hot and supercritical fluids, and their photocatalytic comparison with sol-gel prepared equivalents. Mater. Res. Bull. 95, 95–103 (2017).  https://doi.org/10.1016/j.materresbull.2017.07.023 Google Scholar
  43. 43.
    H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang, T. Xie, Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 116(3), 2425–2430 (2012).  https://doi.org/10.1021/jp206798d Google Scholar
  44. 44.
    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999).  https://doi.org/10.1021/ja992541y Google Scholar
  45. 45.
    P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014).  https://doi.org/10.1039/c4ta04100c Google Scholar
  46. 46.
    I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015).  https://doi.org/10.1016/j.apsusc.2015.08.097 Google Scholar
  47. 47.
    T. Komatsu, The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 202(1), 19–25 (2001)Google Scholar
  48. 48.
    R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A Mol Biomol Spectrosc 61(5), 829–834 (2005).  https://doi.org/10.1016/j.saa.2004.06.006 Google Scholar
  49. 49.
    X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125(1–2), 59–65 (2011).  https://doi.org/10.1016/j.matchemphys.2010.08.071 Google Scholar
  50. 50.
    J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80, 213–221 (2014).  https://doi.org/10.1016/j.carbon.2014.08.059 Google Scholar
  51. 51.
    L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016).  https://doi.org/10.1016/j.diamond.2016.06.009 Google Scholar
  52. 52.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893 (2008).  https://doi.org/10.1039/b800274f Google Scholar
  53. 53.
    A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings. Surf. Sci. 601(4), 1153–1159 (2007).  https://doi.org/10.1016/j.susc.2006.12.010 Google Scholar
  54. 54.
    G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135(2–3), 167–175 (2004).  https://doi.org/10.1016/j.elspec.2004.03.004 Google Scholar
  55. 55.
    E.A. Abdullah, A.H. Abdullah, Z. Zainal, M.Z. Hussein, T.K. Ban (2012) Synthesis and characterisation of Penta-Bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. e-J. Chem. 9 (4).  https://doi.org/10.1155/2012/707853
  56. 56.
    M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010).  https://doi.org/10.1016/j.apsusc.2010.07.086 Google Scholar
  57. 57.
    L. Svoboda, P. Praus, M.J. Lima, M.J. Sampaio, D. Matýsek, M. Ritz, R. Dvorský, J.L. Faria, C.G. Silva, Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 100, 322–332 (2018).  https://doi.org/10.1016/j.materresbull.2017.12.049 Google Scholar
  58. 58.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966).  https://doi.org/10.1002/pssb.19660150224 Google Scholar
  59. 59.
    Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013).  https://doi.org/10.1038/srep01943 Google Scholar
  60. 60.
    D.-K. Ma, M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, S.-M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012).  https://doi.org/10.1039/C2DT30099K Google Scholar
  61. 61.
    P.M. Wood, The potential diagram for oxygen at pH 7. Biochem. J. 253(1), 287–289 (1988).  https://doi.org/10.1042/bj2530287 Google Scholar
  62. 62.
    K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 9(7), 1969–1982 (2016).  https://doi.org/10.1007/s12274-016-1088-8 Google Scholar
  63. 63.
    M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20(1), 88–110 (2014).  https://doi.org/10.3390/molecules20010088 Google Scholar
  64. 64.
    X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 193–194, 290–295 (2012).  https://doi.org/10.1016/j.cej.2012.04.033 Google Scholar
  65. 65.
    N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7), 3718–3723 (2012).  https://doi.org/10.1021/am300812n Google Scholar
  66. 66.
    J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts. Small Methods 1(5), 1700080 (2017).  https://doi.org/10.1002/smtd.201700080 Google Scholar
  67. 67.
    A. Kudo, H. Nagayoshi, Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor. Catal. Lett. 52, 109–111 (1998)Google Scholar
  68. 68.
    Z. Zhang, M. Wang, W. Cui, H. Sui, Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 7(14), 8167–8177 (2017).  https://doi.org/10.1039/c6ra27766g Google Scholar
  69. 69.
    M. Ou, Q. Zhong, S. Zhang, L. Yu, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloy. Compd. 626, 401–409 (2015).  https://doi.org/10.1016/j.jallcom.2014.11.148 Google Scholar
  70. 70.
    J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018).  https://doi.org/10.1016/j.apcatb.2018.04.056 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryVŠB-Technical University of OstravaOstravaCzech Republic
  2. 2.Institute of Environmental TechnologyVŠB-Technical University of OstravaOstravaCzech Republic
  3. 3.Faculty of ScienceJ. E. Purkyně UniversityÚstí nad LabemCzech Republic

Personalised recommendations