Advertisement

A New Composite Based on Electroactive Zirconium Phosphate: Morfology, Structure and Their Behavior as a Voltammetric Sensor in the Ascorbic Acid Detection

  • Devaney Ribeiro Do CarmoEmail author
  • Tayla Fernanda Serantoni da Silveira
Article
  • 64 Downloads

Abstract

An electroactive and chemically stable composite was obtained from zirconium (IV) isopropoxide (ZrI) and phosphoric acid (ZrP). The ZrP was characterized by techniques such as Fourier transform infrared spectroscopy, 13C and 31P nuclear magnetic resonance, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, surface area and porosity and cyclic voltammetry. Voltammetric behaviour of the ZrP was obtained using of a modified graphite paste electrode in a potential range from − 0.20 to 1.00 V (vs Ag/AgCl). ZrP showed one redox couple with average potential \({E^{\theta ^{\prime}}}\) = 0.30 V (vs Ag/AgCl(sat.)) (40% w/w; v = 20 mV s−1; KCl; 1.00 mol L−1). It was tested on electrocatalytic detection of ascorbic acid using cyclic voltammetry and square wave voltammetry. The modified electrode showed a detection limit of 2.4 × 10−5 mol L−1, with relative standard deviation of ± 3% (n = 3) and amperometric sensitivity of 11.7 mA/mol L−1 (R = 0.999) by using the cyclic voltammetry technique and a detection limit of 1.10 × 10−4 mol L−1 with relative standard deviation of ± 2% (n = 3) and amperometric sensitivity of 126.9 mA/mol L−1 (R = 0.998) by using the square wave voltammetry technique.

Keywords

Zirconium phosphate Composite materials Spectroscopy Voltammetry Ascorbic acid 

Notes

Acknowledgements

The authors are grateful for Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Proc. 2013/08495-9) and Capes.

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo. Grant nos. 2012/05438-1 and 2013/08495-9.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Roza, Understanding the Elements of Periodic Table: Zirconium (The Rosen Publishing Group, (first Ed.) (New York, 2009)Google Scholar
  2. 2.
    A.I. Vogel, in Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis, ed. by G. Svehla (Longman, (fifth Ed.) (New York, 1979)Google Scholar
  3. 3.
    K.A. Venkatesan, P.R. Vasudeva Rao, K. Štamberg, Modelling of the sorption of Sr(II) on hydrous zirconium oxide. J. Radioanal. Nucl. Chem. 250, 477 (2001)Google Scholar
  4. 4.
    A. Bortun, M. Bortun, J. Pardini, S. Khainakov, A, J.R. García, Effect of competitive ions on the arsenic removal by mesoporous hydrous zirconium oxide from drinking water. Mater. Res. Bull. 45, 1628 (2010)CrossRefGoogle Scholar
  5. 5.
    J.P. Brunelle, Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50, 1211 (1978)CrossRefGoogle Scholar
  6. 6.
    A. Clearfield, J.A. Stynes, The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J. Inorg. Nucl. Chem. 26, 117 (1964)CrossRefGoogle Scholar
  7. 7.
    C.B. Amphlett, L.A. McDonald, M.J. Redman, Synthetic inorganic ion-exchange materials—I zirconium phosphate. J. Inorg. Nucl. Chem. 6, 220 (1958)CrossRefGoogle Scholar
  8. 8.
    A. Clearfield, W.L. Duax, A.S. Medina, G. Smith, D, J.R. Thomas, Mechanism of ion exchange in crystalline zirconium phosphates. I. Sodium ion exchange of.alpha.-zirconium phosphate. J. Phys. Chem. 73, 3424 (1969)CrossRefGoogle Scholar
  9. 9.
    U. Costantino, F. Marmottini, M. Curini, Rosati, O 1993 Metal exchanged layered zirconium hydrogen phosphate as base catalyst of the Michael reaction. Catal. Lett. 22, 333 (1993)CrossRefGoogle Scholar
  10. 10.
    M. Zamin, T. Shaheen, A. Dyer, Use of amorphous zirconium phosphate for the treatment of radioactive waste. J. Radioanal. Nucl. Chem. 182, 323 (1994)CrossRefGoogle Scholar
  11. 11.
    A. Dyer, T. Shaheen, M. Zamin, Ion exchange of strontium and caesium into amorphous zirconiumphosphates. J. Mater. Chem. 7, 1895 (1997)CrossRefGoogle Scholar
  12. 12.
    V. Saxena, A. Diaz, A. Clearfield, J. Batteasb, D, M.D. Hussain, Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer. Nanoscale 5, 2328 (2013)CrossRefGoogle Scholar
  13. 13.
    I.A. Stenina, A.B. Il’in, S.D. Kirik, N.A. Zhilyaeva, G.Y. Yurkovd, A.B. Yaroslavtsev, Catalytic properties of composite materials based on mesoporous silica and zirconium hydrogen phosphate. Inorg. Mater. 50, 586 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, R. Huang, F. Ding, A.D. Brittain, J. Liu, M. Zhang, M. Xiao, Y. Meng, L. Sun, Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications. ACS Appl. Mater. Interfaces 6, 7417 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Wu, C. Liu, J. Chen, Y. Yanga, Y. Chen, Preparation and characterization of chitosan/α-zirconium phosphate nanocomposite films. Polym. Int. 59 923 (2010)Google Scholar
  16. 16.
    B.M. Mosby, A. Díaz, V. Bakhmutov, A. Clearfield, Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl. Mater. Interfaces 6, 585 (2014)CrossRefGoogle Scholar
  17. 17.
    V.K. Gupta, A. Nayak, S. Agarwal, B. Singhal, Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14, 284 (2011)CrossRefGoogle Scholar
  18. 18.
    V.K. Gupta, B. Sethi, R.A. Sharma, S. Agarwal, A. Bharti, Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liquids 177, 114 (2013)CrossRefGoogle Scholar
  19. 19.
    V.K. Gupta, M.R. Ganjali, P. Norouzi, H. Khani, A. Nayak, S. Agarwal, Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit, Rev, Anal, Chem. 41, 282 (2011)CrossRefGoogle Scholar
  20. 20.
    S.K. Srivastava, V.K. Gupta, M.K. Dwivedi, S. Jain, Caesium PVC–crown (dibenzo-24-crown-8) based membrane sensor. Anal. Proc. 32, 21 (1995)CrossRefGoogle Scholar
  21. 21.
    V.K. Gupta, H. Karimi-Maleh, S. Sadegh, Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303 (2015)Google Scholar
  22. 22.
    V.K. Gupta, A.K. Singh, L.K. Kumawat, Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuators B 195, 98 (2014)CrossRefGoogle Scholar
  23. 23.
    S.K. Srivastava, V.K. Gupta, S. Jain, Determination of lead using a poly(vinyl chloride)-based crown ether membrane. Analyst 120, 495 (1995 )CrossRefGoogle Scholar
  24. 24.
    S.K. Srivastava, V.K. Gupta, S. Jain, PVC-based 2,2,2-cryptand sensor for zinc ions. Anal. Chem. 68, 1272 (1996)CrossRefGoogle Scholar
  25. 25.
    V.K. Gupta, L.P. Singh, R. Singh, N. Upadhyay, S.P. Kaur, B. Sethi, A novel copper (II) selective sensor based on Dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. J. Mol Liquids 174, 11 (2012)CrossRefGoogle Scholar
  26. 26.
    M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liquids 215, 671 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J. Mol. Liquids 173, 153 (2012)CrossRefGoogle Scholar
  28. 28.
    V.K. Gupta, N. Atar, M.L. Yola, Z. Üstündağ, L. Uzun, A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210 (2014)CrossRefGoogle Scholar
  29. 29.
    M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204 (2014)CrossRefGoogle Scholar
  30. 30.
    V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, Selective naked-eye detection of Magnesium (II) ions using a coumarin-derived fluorescent probe. Sens Actuators B 207, 216 (2015)CrossRefGoogle Scholar
  31. 31.
    V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 144, 80 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M.L. Yola, V.K. Gupta, A.A. Ensafi, A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res. 54, 3634 (2015)CrossRefGoogle Scholar
  33. 33.
    A.K. Jain, V.K. Gupta, B. Sahoo, B, L.P. Singh, Copper(II)-selective electrodes based on macrocyclic compounds. Anal. Proc. 32, 99 (1995)CrossRefGoogle Scholar
  34. 34.
    A.K. Jain, V.K. Gupta, L.P. Singh, Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal. Proc. 32, 263 (1995)CrossRefGoogle Scholar
  35. 35.
    N.F. Atta, M.F. El-Kady, A. Galal, Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal. Biochem. 400, 78 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, M. Zhang, Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Anal. Chim. Acta 741, 15 (2012)CrossRefGoogle Scholar
  37. 37.
    V.M.Y. Reddy, S. Bathinapatla, A. Shilpi, K.G. Vinod, G. Madhavi, Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J. Electroanal. Chem. 820, 168 (2018)CrossRefGoogle Scholar
  38. 38.
    V.M.Y. Reddy, S. Bathinapatla, T. Łuczak, M. Osińska, H. Maseed, P. Ragavendra, S.L. Subramanyam, V.V.S.S. Srikanthe, G. Madhavi, An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New J. Chem. 42, 3137 (2018)CrossRefGoogle Scholar
  39. 39.
    Mayo Foundation for Medical Education and Research Laboratories. Test Catalog: Ascorbic Acid (Vitamin C), Plasma Google Scholar
  40. 40.
    S.P. Arya, M. Mahajan, P. Jain, Non-spectrophotometric methods for the determination of Vitamin C. Anal. Chim. Acta 417, 1 (2000)CrossRefGoogle Scholar
  41. 41.
    D. Ji, Y. Du, H. Meng, L. Zhang, Z. Huang, Y. Hu, J. Li, F. Yu, Z. Li, A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sens. Actuators B 256, 512 (2018)CrossRefGoogle Scholar
  42. 42.
    W. Cui, Y. Wang, D. Yang, J. Du, Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase–mimetic properties of cobalt oxyhydroxide nanosheets. Microchim. Acta 184, 4749 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Scremin, E.C.M. Barbosa, C.A. Salamanca-Neto, P.H. Camargo, E.R. Sartori, Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes. Microchim Acta 185, 251 (2018)CrossRefGoogle Scholar
  44. 44.
    T.H. Hasanin, A, T. Fujiwara, Flow-injection chemiluminescence method for sensitive determination of ascorbic acid in fruit juices and pharmaceutical samples using a luminol–cetyltrimethylammonium chloride reversed micelle system. Anal. Sci. 34, 777 (2018)CrossRefGoogle Scholar
  45. 45.
    E.J. Oliveira, D.W. Watson, Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. J. Chromatogr. B 764, 3 (2001)CrossRefGoogle Scholar
  46. 46.
    M.H. Bur-Nguyen, Application of high-performance liquid chromatography to the separation of ascorbic acid from isoascorbic acid. J. Chromatogr. 196, 163 (1980)CrossRefGoogle Scholar
  47. 47.
    D.K. Yadav, R. Gupta, V. Ganesan, P.K. Sonkar, Individual and simultaneous voltammetric determination of ascorbic acid, uric acid and folic acid by using a glassy carbon electrode modified with gold nanoparticles linked to bentonite via cysteine groups. Microchim Acta 184, 1951 (2017)CrossRefGoogle Scholar
  48. 48.
    M.R. Ganjali, F.G. Nejad, H. Beitollahi, S. Jahani, M. Rezapour, B. Larijani, Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci. 12, 3231 (2017)CrossRefGoogle Scholar
  49. 49.
    D.R. do Carmo, L.L. Paim, N.R. Stradiotto, Ferrocene adsorbed into the porous octakis(hydridodimethylsiloxy)silsesquioxane after thermolysis in tetrahydrofuran media: an applied surface for ascorbic acid determination. Mat Res Bull 47, 1028 (2012)CrossRefGoogle Scholar
  50. 50.
    M.S. Magossi, V.A. Maraldi, M.S. Magossi, N.L. Dias-Filho, D.R. do Carmo, Silica gel functionalized with 4-Amino-5-(4pyridyl)-4H-1,2,4-triazole-3-thiol and their use as a copper sorbent and electromediator for voltammetric detection of ascorbic acid. Electroanal 30, 2660 (2018)CrossRefGoogle Scholar
  51. 51.
    A.G. Fogg, A.M. Summan, Differential-pulse polarographic monitoring of permitted synthetic food colouring matters and ascorbic acid in accelerated light degradation studies and the spectrophotometric determination of the ammonia and simpler amines formed. Analyst 108, 691 (1983)CrossRefGoogle Scholar
  52. 52.
    R. Sandulescu, R. Obrean, L. Roman, Carbon paste electrode in the quantitative determination of ascorbic acid in pharmaceutical forms. Farmacia 45, 23 (1997)Google Scholar
  53. 53.
    T.F.S. da Silveira, D.S. Fernandes, M.S. Magossi, P.F.P. Barbosa, T.R. Souza, M.S. Magossi, D.R. Do Carmo, A novel composite obtained through of chemical interaction of zirconium (IV) phosphated with silver hexacyanoferrate (III) for voltammetric detection of L-cysteine. Int. J. Electrochem. Sci. 11, 7527 (2016)CrossRefGoogle Scholar
  54. 54.
    R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, (Ed.) (New York, 2005)Google Scholar
  55. 55.
    G.A. Seisenbaeva, S. Gohil, V.G. Kessler, Influence of heteroligands on the composition, structure and properties of homo- and heterometallic zirconium alkoxides. Decisive role of thermodynamic factors in their self-assembly. J. Mater. Chem. 14, 3177 (2004)CrossRefGoogle Scholar
  56. 56.
    M.J. Hudson, A.D. Workman, R.J.W. Adams, High resolution solid state 31P and 15N magic angle spinning nuclear magnetic resonance studies of amorphous and microcrystalline, layered metal (IV) hydrogenphosphates. Solid State Ion. 46, 159 (1991)CrossRefGoogle Scholar
  57. 57.
    M.J. Hudson, A.D. Workman, High-resolution solid-state 31P and 119Sn magic-angle spinning nuclear magnetic resonance studies of amorphous and microcrystalline layered metal (IV) hydrogenphosphates. J. Mater. Chem. 1, 375 (1991)CrossRefGoogle Scholar
  58. 58.
    A. Donnadio, M. Pica, D. Capitani, V. Bianchi, M.J. Casciola, Layered zirconium alkylphosphates: suitable materials for novel PFSA composite membranes with improved proton conductivity and mechanical stability. Membr. Sci. 462, 42 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Arfelli, G. Mattogno, C. Ferragina, M.A.J. Massucci, XPS characterization ofγ-zirconium phosphate and of some of its intercalation compounds. A comparison with the α-zirconium phosphate analogues. Incl. Phenom. Macrocycl. Chem. 11, 15 (1991)CrossRefGoogle Scholar
  60. 60.
    G. Mattogno, C. Ferragina, M.A. Massucci, P. Patrono, A. La Ginestra, X-ray photoelectron spectroscopic evidence of interlayer complex formation between Co(II) and N-heterocycles in α-Zr(hpo4)2 · H2O. J. Electron. Spectrosc. Relat. Phenom. 46, 285 (1988)CrossRefGoogle Scholar
  61. 61.
    J.L. Colón, D.S. Thakur, C.Y. Yang, A. Clearfield, C.R. Martin, X-ray photoelectron spectroscopy and catalytic activity of α-zirconium phosphate and zirconium phosphate sulfophenylphosphonate. J. Catal. 124, 148 (1990)CrossRefGoogle Scholar
  62. 62.
    H. Akhiani, A. Hunt, X. Cui, A. Moewes, J. Szpunar, The electronic structure of zirconium in hydrided and oxidized states. J. Alloys Compd. 622, 463 (2015)CrossRefGoogle Scholar
  63. 63.
    C.O. Gonzaléz, E.A. García, An X-ray photoelectron spectroscopy study of the surface oxidation of zirconium. Surf. Sci. 193, 305 (1988)CrossRefGoogle Scholar
  64. 64.
    E.S. Gonçalves, M.C. Rezende, M.C. Rezende, M.R. Baldan, N.G. Ferreira, Efeito do tratamento térmico na microestrutura, turbostraticidade e superfície de carbono vítreo reticulado analisado por XPS, espalhamento RAMAN e voltametria cíclica. Quim. Nova 32, 158 (2009)CrossRefGoogle Scholar
  65. 65.
    C.A. Pessôa, Y. Gushikem, L.T. Kubota, Electrochemical study of methylene blue immobilized in zirconium phosphate. Electroanal. 9, 800 (1997)CrossRefGoogle Scholar
  66. 66.
    L. Hliwa, M. Azzi, A. Bennani, N. Saib, S. Maximovitch, F. Dalard, Phosphate oxidation on boron doped diamond electrode. J. New Mat. Electrochem. Syst. 13, 141 (2010)Google Scholar
  67. 67.
    B. Marselli, J. Garcia-Gomez, P.A. Michaud, M.A. Rodrigo, C. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, 73 (2003)CrossRefGoogle Scholar
  68. 68.
    A. Abbaspour, A. Ghaffarinejad, Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim. Acta 53, 6643 (2008)CrossRefGoogle Scholar
  69. 69.
    D. Engel, E.W. Grabner, Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective. electrode. Ber. Bunsen-Ges. Phys. Chem. 89, 982 (1985)CrossRefGoogle Scholar
  70. 70.
    D.R. do Carmo, R.M. Silva, N.R. Stradiotto, Estudo eletroquímico de Fe[Fe(CN)5NO] em eletrodo de pasta de grafite. Eclet. Quim. 27, 197 (2002)CrossRefGoogle Scholar
  71. 71.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, (Ed.) (New York, 1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Devaney Ribeiro Do Carmo
    • 1
    Email author
  • Tayla Fernanda Serantoni da Silveira
    • 1
    • 2
  1. 1.Departamento de Física e Química, Faculdade de Engenharia de Ilha SolteiraUniversidade Estadual Paulista “Júlio de Mesquita Filho”Ilha SolteiraBrazil
  2. 2.Instituto de QuímicaUniversidade Federal de Mato Grosso do Sul, Campo Grande-MSCampo GrandeBrazil

Personalised recommendations