Advertisement

Effect of Surface Hydrophilicity on the Desulfurization Performance of ZnO/SiO2 Composite

  • YingRui Zhao
  • Chao Yang
  • HongYan Zhang
  • Gen Qiang
  • HuiLing FanEmail author
Article
  • 6 Downloads

Abstract

Two kinds of ZnO/SiO2 composite (labled as SZ-1 and SZ-2) were synthesized by sol–gel method and characterized by X-ray diffraction (XRD) patterns, XPS (X-ray photoelectron spectroscopy) spectra and Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra. Water adsorption on the prepared sample was studied by in situ DRIFT. The as-synthesized SZ-1 and SZ-2 sample have different surface property due to the various aging methods in the sample preparation processes, thus showing different results of water adsorption. The adsorption sites (Si atom in Si–O–Si bond) on the surface of SZ-2 for water molecule are occupied by the –OCH3 group and the hydrophilicity of SZ-2 is weaker, in comparison to SZ-1, which inhibits the formation of water film and ultimately decreases desulfurization performance of SZ-2. So, the desulfurization performance can be changed by altering the hydrophilicity of sorbent.

Keywords

ZnO/SiO2 composite H2S removal Hydrophilicity 

Notes

Acknowledgements

This work was financially supported by National Nature Science Fundamental (21576180).

References

  1. 1.
    G. Huang, E. He, Z. Wang, H. Fan, J. Shangguan, E. Croiset, Z. Chen, Ind. Eng. Chem. Res. 54, 150806062042006 (2015)Google Scholar
  2. 2.
    K. Polychronopoulou, J.L.G. Fierro, A.M. Efstathiou, Appl. Catal. B 57, 125–137 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Rezaei, A. Tavana, J.A. Sawada, L. Wu, A.S.M. Junaid, S.M. Kuznicki, Ind. Eng. Chem. Res. 51, 12430–12434 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Meng, W.D. Jong, R. Pal, A.H.M. Verkooijen, Fuel Process. Technol. 91, 964–981 (2010)CrossRefGoogle Scholar
  5. 5.
    P.R. Westmoreland, D.P. Harrison, Environ. Sci. Technol. 10, 659–661 (1976)CrossRefGoogle Scholar
  6. 6.
    R.B. Slimane, J. Abbasianb, Fuel Process. Technol. 70, 97–113 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Galtayries, J.P. Bonnelle, Surf. Interface Anal. 23, 171–179 (1995)CrossRefGoogle Scholar
  8. 8.
    J. Wang, C. Yang, Y.R. Zhao, H.L. Fan, Z.D. Wang, J. Shangguan, J. Mi, Ind. Eng. Chem. Res. (2017)Google Scholar
  9. 9.
    H.F. Garces, H.M. Galindo, L.J. Garces, J. Hunt, A. Morey, S.L. Suib, Microporous Mesoporous Mater. 127, 190–197 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Jian, S. Modi, L. Ke, R. Lesieur, Energy Fuels 21, 1863–1871 (2007)CrossRefGoogle Scholar
  11. 11.
    L.J. Wang, H.L. Fan, J. Shangguan, E. Croiset, Z. Chen, H. Wang, J. Mi, Acs Appl. Mater. Interfaces 6, 21167–21177 (2014)CrossRefGoogle Scholar
  12. 12.
    J.M. Davidson, K. Sohail, Ind. Eng. Chem. Res. 34, 3675–3677 (1995)CrossRefGoogle Scholar
  13. 13.
    B.G. Jr, Science 294, 67–69 (2001)CrossRefGoogle Scholar
  14. 14.
    B. Meyer, H. Rabaa, D. Marx, Phys. Chem. Chem. Phys. Pccp 8, 1513–1520 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Liu, Z.H. Huang, F. Kang, J. Hazard. Mater. 215–216, 166 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Mureddu, I. Ferino, E. Rombi, M.G. Cutrufello, P. Deiana, A. Ardu, A. Musinu, G. Piccaluga, C. Cannas, Fuel 102, 691–700 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Ievtushenko, O. Khyzhun, I. Shtepliuk, Acta Phys. Pol. 124, 858–861 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, W. Wu, J. Phys. Condens. Matter 15, 2867 (2003)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, C. Shao, Z. Zhang, J. Li, P. Zhang, M. Zhang, J. Mu, Z. Guo, P. Liang, Y. Liu, Acs Appl. Mater. Interfaces 4, 785 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Wang, X. Luo, X. Wu, X. Wei, L. Zhou, X. Zheng, Nanoscale Res. Lett. 20, 646–654 (2013)Google Scholar
  21. 21.
    L. Fernández, N. Garro, J.E. Haskouri, M. Pérezcabero, J. Alvarezrodríguez, J. Latorre, C. Guillem, A. Beltrán, D. Beltrán, P. Amorós, Nanotechnology 19, 225603 (2008)CrossRefGoogle Scholar
  22. 22.
    N. Wang, T. Zhou, J. Wang, H. Yuan, D. Xiao, Analyst 135, 2386–2393 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Yang, Y. Xiao, K. Liu, Q. Feng, J. Am. Ceram. Soc. 91, 1591–1596 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Rubio, J. Rubio, J.L. Oteo, Spectrosc. Lett. 31, 199–219 (1998)CrossRefGoogle Scholar
  25. 25.
    E. Tang, H. Liu, L. Sun, E. Zheng, G. Cheng, Eur. Polym. J. 43, 4210–4218 (2007)CrossRefGoogle Scholar
  26. 26.
    J.C. You, J. Wen, Y.W. Ma, J. Atomic Mol. Phys. 35 (2018)Google Scholar
  27. 27.
    T.R. Forester, R.F. Howe, Cheminform 18 (1987)Google Scholar
  28. 28.
    X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Microporous Mesoporous Mater. 197, 252–261 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, M. Muhler, Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)CrossRefGoogle Scholar
  30. 30.
    D.B. Asay, S.H. Kim, J. Phys. Chem. B 109, 16760–16763 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Nagao, J. Phys. Chem. 75, 3822–3828 (1971)CrossRefGoogle Scholar
  32. 32.
    E. Mccafferty, A.C. Zettlemoyer, Discuss. Faraday Soc. 52, 239–254 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Science and Technology, Co-founded by Shanxi Province and the Ministry of Science and Technology, Institute for Chemical Engineering of CoalTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations