Application of Novel Fe3O4–Polyaniline Nanocomposites in Asphaltene Adsorptive Removal: Equilibrium, Kinetic Study and DFT Calculations

  • Zeinab Hosseini Dastgerdi
  • Seyyed Salar MeshkatEmail author
  • Soleyman Hosseinzadeh
  • Mehdi D. Esrafili


Recent investigations have shown that surface modification can improve the colloidal stability and chemical properties of the metallic nanoparticles. In this study, poly aniline (PANI) coated Fe3O4 nanoparticles were synthesized and used for asphaltene adsorption. The prepared nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating-sample magnetometer techniques. The effects of adsorbent amount, initial asphaltene concentration and heptane to toluene volume ratio on the sorbents adsorptive capability were studied. The experimental sorption isotherm data was fitted to the Langmuir isotherm model for coated and uncoated adsorbents. The kinetic data was consistent with Pseudo second order kinetic model. Asphaltene adsorption on Fe3O4/PANI composite was much higher than pure Fe3O4 due to the significant π–π interactions between asphaltene and adsorbent and stability effect of PANI. The results indicated that PANI coated Fe3O4 is an appropriate candidate for crude oil upgrading. Moreover, density functional theory calculations confirm that the adsorption energy of asphaltene over the Fe3O4/PANI composite is larger than that over the bare Fe3O4. This can be mainly attributed to the more favorable orbital interactions as well as charge-transfer effects between asphaltene and PANI in the former system.


Adsorption Asphaltene Nanocomposite Stability Interaction 



This research project has been carried out with financial support of the Iran National Science Foundation (INSF). (Content No. 90008029.)


  1. 1.
    J.Ph. Pfeiffer, R.N.J. Saal, Asphaltic bitumen as colloid system. J. Phys. Chem. 44(2), 139–149 (1940)CrossRefGoogle Scholar
  2. 2.
    B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross, Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 31, 137 (2015)Google Scholar
  3. 3.
    B.B. Maini, H.K. Sarmaand, A.E. George, Significance of foamy-oil behavior in primary production of heavy oils. J. Can. Pet. Technol. 32, 50 (1993)CrossRefGoogle Scholar
  4. 4.
    Z. Hoseini Dastgerdi, S.S. Meshkat, An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution. J. Pet. Sci. Eng 174, 1053 (2019)CrossRefGoogle Scholar
  5. 5.
    P. Ekholm, E. Blomberg, P. Claesson, I.H. Auflem, J. Sjoblom, A.J. Kornfeldt, A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. Colloid Interface Sci. 247, 32 (2002)CrossRefGoogle Scholar
  6. 6.
    W.A. Abdallah, S.D. Taylor, Surface characterization of adsorbed asphaltene on a stainless steel surface. Nucl. Instrum. Methods Phys. Res. B 258, 11 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Pernyeszi, I. Dekany, Sorption and elution of asphaltenes from porous silica surfaces. Colloids Surf. A 194, 25 (2001)CrossRefGoogle Scholar
  8. 8.
    T. Pernyeszi, A. Patzko, O. Berkesi, I. Dekany, Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids Surf. A 137, 373 (1998)CrossRefGoogle Scholar
  9. 9.
    A. Saada, B. Siffert, E.J. Papirer, Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites. Colloid Interface Sci. 174, 185 (1998)CrossRefGoogle Scholar
  10. 10.
    H. Gaboriau, A. Saada, Influence of heavy organic pollutants of anthropic origin on PAH retention by kaolinite. Chemosphere 44, 1633 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Szymula, A.W. Marczewski, Adsorption of asphaltenes from toluene on typical soils of Lublin region. Appl. Surf. Sci. 196, 301 (2001)CrossRefGoogle Scholar
  12. 12.
    N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy Fuels 24, 16 (2010)Google Scholar
  13. 13.
    M. Madhi, A. Bemani, A. Daryasafar, M.R. Khosravi, Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption. Pet. Sci. Technol. 35, 242–248 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Hosseinpour, A. Khodadadi, A. Bahramian, Y. Mortazavi, Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29, 2 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Castillo, V. Vargas, V. Piscitelli, L. Ordoñez, H. Rojas, Study of asphaltene adsorption onto raw surfaces and iron nanoparticles by AFM force spectroscopy. J. Pet. Sci. Eng. 151, 248 (2017)CrossRefGoogle Scholar
  16. 16.
    N.N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, P. Pereira-Almao, Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Mirzayi, N. NaghdiShayan, Adsorption kinetics and catalytic oxidation of asphalteneon synthesized maghemite nanoparticles. J. Pet. Sci. Eng. 121, 13 (2014)CrossRefGoogle Scholar
  18. 18.
    S.I. Hashemi, B. Fazelabdolabadi, S. Moradi, A.M. Rashidi, A. Shahrabadi, H. Bagherzadeh, On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix. Appl. Nanosci. 6, 71 (2016)CrossRefGoogle Scholar
  19. 19.
    C.A. Franco, N.N. Nassar, M.A. Ruiz, P.R. Pereira-Almao, F.B. Cortés, Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy Fuels 27, 6 (2013)Google Scholar
  20. 20.
    N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuels (2011). Google Scholar
  21. 21.
    B.J. Abu Tarboush, M.M. Husein, Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. J. Colloid Interface Sci. 378, 64 (2012)CrossRefGoogle Scholar
  22. 22.
    S.M. Hashmi, A. Firoozabadi, Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation. J. Phys. Chem. B 114, 48 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Setoodeh, N.P. Darvishi, F. Esmaeilzadeh, Adsorption of asphaltene from crude oil by applying polythiophene coating on Fe3O4 nanoparticles. J. Dispers. Sci. Technol. 39, 5 (2018)Google Scholar
  24. 24.
    X. Liua, L. Zhang, Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technol. 277, 112 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Wang, Y. Liu, S. Tao, B. Xing, Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon 48, 3721 (2010)CrossRefGoogle Scholar
  26. 26.
    S.S. Umarea, B.H. Shambharkara, R.S. Ningthoujamb, Synthesis and characterization of polyaniline–Fe3O4 nanocomposite: electrical conductivity, magnetic, electrochemical studies. Synth. Met. 160, 18 (2010)Google Scholar
  27. 27.
    A.H. Abdalsalam, A.A. Ati, A. Abduljabbar, T.A. Hussein, Structural, optical, electrical and magnetic studies of PANI/ferrite nanocomposites synthesized by PLD technique. J. Inorg. Organomet. Polym. Mater. (2018). Google Scholar
  28. 28.
    U. Kurtan, Y. Junejo, B. Unal, A. Baykal, The electrical properties of polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite. J. Inorg. Organomet. Polym. 23, 1089 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Kavas, M. Gunay, A. Baykal, M.S. Toprak, H. Sozeri, B. Aktas, Negative permittivity of polyaniline–Fe3O4 nanocomposite. J. Inorg. Organomet. Polym. 23, 306 (2013)CrossRefGoogle Scholar
  30. 30.
    M.K. Mohammadi Nodeh, S. Soltani, S. Shahabuddin, H. Rashidi Nodeh, H. Sereshti, Equilibrium, kinetic and thermodynamic study of magnetic polyaniline/graphene oxide based nanocomposites for ciprofloxacin removal from water. J. Inorg. Organomet. Polym. Mater. 28, 1226 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Appl. Surf. Sci. 256, 44 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  33. 33.
    B. Delley, From molecules to solids with the DMol3DMol3 approach. J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  35. 35.
    B. Delley, Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125 (2002)CrossRefGoogle Scholar
  36. 36.
    S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  38. 38.
    J.G. Speight, S.E. Moschopedis, On the molecular nature of petroleum asphaltenes. Adv. Chem. Ser. 195, 1 (1981)Google Scholar
  39. 39.
    F. Camilo, P. Edgar, B. Pedro, M.A. Ruiz, F.B. Cortés, Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105, 8 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zeinab Hosseini Dastgerdi
    • 1
  • Seyyed Salar Meshkat
    • 1
    Email author
  • Soleyman Hosseinzadeh
    • 2
  • Mehdi D. Esrafili
    • 3
  1. 1.Faculty of Chemical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Department of Chemical EngineeringPayame Noor UniversityUrmiaIran
  3. 3.Laboratory of Theoretical Chemistry, Department of ChemistryUniversity of MaraghehMaraghehIran

Personalised recommendations