Advertisement

Copper-doped hybrid Agx–Auy@ZnO nanoparticles and their enhanced photocatalytic activities

  • Mohamed Ali SaidaniEmail author
  • Anis Fkiri
  • Leila-Samia Smiri
Article
  • 55 Downloads

Abstract

In this paper, we report on the simple polyol synthesis of copper-doped hybrid Agx–Auy@ZnO photocatalysts. The obtained samples have been characterized by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, transmission electron microscopy and an N2 adsorption study. The experiment results show that Ag, Au and Ag–Au alloy nanoparticles (NPs) successfully load onto the surface of the assembled Cu-doped ZnO. The photocatalytic performances of Cu-doped Agx–Auy@ZnO nanomaterials have been tested using diuron herbicide as a model contaminant under simulated solar light irradiation. The addition of Ag and/or Au nanoparticles to doped ZnO was strongly beneficial to the rate constant displaying a volcano-like pattern as a function of the Ag and Au content. A maximum pseudo-first-order rate constant of 18.55 × 10−3 min−1, 22.70 × 10−3 min−1 and 24.74 × 10−3 min−1 was achieved on Cu-doped Ag0.3@ZnO, Au0.5@ZnO and Ag0.5–Au0.3@ZnO respectively. The Cu-doped Ag0.5–Au0.3@ZnO bimetallic nanoparticles show the highest photocatalytic activity due to the synergistic effect by effective electron transfer.

Keywords

Photocatalysis Hybrid photocatalyst Zinc oxide Copper-doped Silver Gold Polyol process One pot Solar light Diuron Water treatment 

Notes

Acknowledgements

Mohamed Ali Saidani gratefully acknowledges the support of the Ministry of Higher Education and Scientific Research of Tunisia. The French National Research Agency is also gratefully acknowledged for partially funding this work, while the University of Strasbourg, ICPEES, is thanked for its technical support.

References

  1. 1.
    G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004)CrossRefGoogle Scholar
  2. 2.
    P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)CrossRefGoogle Scholar
  3. 3.
    A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies. Desalination 221, 47–69 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)CrossRefGoogle Scholar
  5. 5.
    B. Roig, C. Gonzalez, O. Thomas, Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim. Acta A 59, 303–307 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci. 29, 10784–10801 (2018)Google Scholar
  7. 7.
    V. Shanmugam, M. Anna Lakshmi, J. Sridhar, K.S. Jeyaperumal, Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation’s of bacteria’s. Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.05.009 Google Scholar
  8. 8.
    V. Shanmugam, K.S. Jeyaperumal, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. 449, 617–630 (2018)CrossRefGoogle Scholar
  9. 9.
    R. Fagan, E.D. McCormack, J.S. Hinder, C.S. Pillai, Photocatalytic properties of g-C3N4–TiO2 heterojunctions under UV and visible light conditions. Materials, 9, 286 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl. Catal. A 304, 55–61 (2006)CrossRefGoogle Scholar
  11. 11.
    C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. (Camb) 48, 2858–2860 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50, 2994–3000 (2012)CrossRefGoogle Scholar
  13. 13.
    N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008)CrossRefGoogle Scholar
  14. 14.
    P.T. Kumar, V.K. Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi, A.G. Unnikrishnan, S.V. Nair, R. Jayakumar, Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4, 2618–2629 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J. Hazard. Mater. 172, 1303–1310 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy. Compd. 577, 717–727 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008)CrossRefGoogle Scholar
  18. 18.
    B. Divband, M. Khatamian, G.R.K. Eslamian, M. Darbandi, Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl. Surf. Sci. 284, 80–86 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Dong, K.-L. Wu, M.-R. Li, L. Liu, X.-W. Wei, Synthesis of Ag3PO4–ZnO nanorod composites with high visible-light photocatalytic activity. Catal. Commun. 46, 32–35 (2014)CrossRefGoogle Scholar
  20. 20.
    A.E. Kandjani, M. Mohammadtaheri, A. Thakkar, S.K. Bhargava, V. Bansal, Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. J. Colloid Interface Sci. 436, 251–257 (2014)CrossRefGoogle Scholar
  21. 21.
    L.V. Trandafilović, R.K. Whiffen, S. Dimitrijević-Branković, M. Stoiljković, A.S. Luyt, V. Djoković, ZnO/Ag hybrid nanocubes in alginate biopolymer: synthesis and properties. Chem. Eng. J. 253, 341–349 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Casanovas, M. Roig, C. de Leitenburg, A. Trovarelli, J. Llorca, Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. Hydrogen Energy 35, 7690–7698 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)CrossRefGoogle Scholar
  24. 24.
    P.C. Nagajyothi, H. Lim, J. Shim, S.B. Rawal, Au nanoparticles supported nanoporous ZnO sphere for enhanced photocatalytic activity under UV-light irradiation. J. Clust. Sci. 27, 1159–1170 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Pearton, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1057 (2010)CrossRefGoogle Scholar
  26. 26.
    D. Wu, X. Fan, K. Tian, J. Dai, H. Liu, Fabrication and photocatalytic properties of Cu2S/T-ZnOw heterostructures via simple polyol process. Trans. Nonferrous Met. Soc. China 22, 1620–1628 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Wu, S. Zhang, X. Xiao, J. Zhou, F. Ren, L. Sun, C. Jiang, Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous alpha-Fe(2)O(3)/ZnO core-shell heterostructures. ACS Appl. Mater. Interfaces 4, 3602–3609 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, L. Liu, Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J. Alloy. Compd. 509, 3286–3292 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Misra, P. Kapur, M.K. Nayak, M. Singla, Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem. 38, 4197–4203 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Chen, T. Tran., T.Ca Huang, J. Li, L. Yuan, Q. Cai, Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Appl. Surf. Sci. 273, 82–88 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Fkiri, M.R. Santacruz, A. Mezni, L.S. Smiri, V. Keller, N. Keller, One-pot synthesis of lightly doped Zn1−xCuxO and Au-Zn1−xCuxO with solar light photocatalytic activity in liquid phase. Environ. Sci. Pollut. Res. Int. 24, 15622–15633 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Malato, J. Caceres, A.R. Fernandez-Alba, L. Piedra, M.D. Hernando, A. Aguera, J. Vial, Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ. Sci. Technol. 37, 2516–2524 (2003)CrossRefGoogle Scholar
  33. 33.
    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 20, 1602–1607 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Xin Wang, Y. Kong, H. Yu, Zhang, Synthesis and characterization of water soluble and bifunctional ZnO-Au nanocomposites. J. Phys. Chem. C 111, 3836–3841 (2007)CrossRefGoogle Scholar
  35. 35.
    O. Kvítek, J. Siegel, V. Hnatowicz, V. Švorčík, Noble metal nanostructures influence of structure and environment on their optical properties. J. Nanomater. 2013, 1–15 (2013)CrossRefGoogle Scholar
  36. 36.
    Q. Zhang, Y.N. Tan, J. Xie, J.Y. Lee, Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4, 9–22 (2008)CrossRefGoogle Scholar
  37. 37.
    A.-Q.W. Jun-Hong, Y.-S. Liu, H.-P. Chi, Lin, C.-Y. Mou, Synergistic effect in an Au-Ag Alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 109, 40–43 (2005)Google Scholar
  38. 38.
    Y. Li, B.-P. Zhang, J.-X. Zhao, Enhanced photocatalytic performance of Au–Ag alloy modified ZnO nanocomposite films. J. Alloy. Compd. 586, 663–668 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, X. Li, G. Lu, G. Chen, Y. Chen, Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Mater. Lett. 62, 2359–2362 (2008)CrossRefGoogle Scholar
  40. 40.
    Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 62, 727–732 (2008)CrossRefGoogle Scholar
  41. 41.
    A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 221, 565–573 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, L. Liu, H. Kuang, L. Wang, C. Xu, SERS-active Ag@Au core–shell NP assemblies for DNA detection. RSC Adv. 4, 56052–56056 (2014)CrossRefGoogle Scholar
  44. 44.
    D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán, G.L. Puma, Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl. Catal. B 178, 74–81 (2015)CrossRefGoogle Scholar
  45. 45.
    Y.-C. Chang, J.-Y. Guo, C.-M. Chen, Double-sided plasmonic Au nanoparticles on Cu-doped ZnO/ZnO heterostructures with enhanced photocatalytic activity. Mater. Lett. 209, 60–63 (2017)CrossRefGoogle Scholar
  46. 46.
    A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011)CrossRefGoogle Scholar
  47. 47.
    Q. Deng, X. Duan, D.H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 4, 6030–6037 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J. Phys. Chem. Lett. 2, 2840–2845 (2011)CrossRefGoogle Scholar
  49. 49.
    N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane, K.M. Garadkar, Fabrication of M@CuxO/ZnO (M = Ag, Au) heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 56, 14489–14501 (2017)CrossRefGoogle Scholar
  50. 50.
    S. Kaviya, E. Prasad, Biogenic synthesis of ZnO–Ag nano custard apples for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv. 5, 17179–17185 (2015)CrossRefGoogle Scholar
  51. 51.
    G. Foura, A. Soualah, D. Robert, Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron. Water Sci. Technol. 75, 20–27 (2017)CrossRefGoogle Scholar
  52. 52.
    D. de la Cruz, J.C. Arevalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguezabal, TiO2 doped with Sm3+ by sol-gel: synthesis, characterization and photocatalytic activity of diuron under solar light. Catal. Today 166, 152–158 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unité de Recherche Synthèse et Structure de Nanomatériaux UR11 ES30, Faculté des Sciences de BizerteUniversité de CarthageJarzouna, BizerteTunisia

Personalised recommendations