Facile Synthesis and Characterization of CoS2–SiO2/Chitosan: The Photocatalysis in Real Samples, and Antimicrobial Evaluation

  • Ali Fakhri
  • Alireza FeizbakhshEmail author
  • Elaheh Konoz
  • Ali Niazi


In the present work, The SiO2, and CoS2–SiO2 nanomaterials and incorporated on chitosan was developed as photocatalyst for photocatalytic degradation of toxic compound such as ethidium bromide as a hazard mutagenic pollutant. The SiO2, and CoS2–SiO2 nanomaterials were prepared using the sol–gel/sonochemical method. Therefore, the nano photocatalyst were characterized by various analytical devices such as scanning electron microscopy (SEM), X-ray diffraction and photoelectron (XRD and XPS) analysis, energy dispersive X-ray spectrometer (EDS), UV–Vis absorption spectroscopy and dynamic light scattering, in order to attain the structural properties. The average crystallite size values of SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan nanocomposites are 0.63, 40.28, and 69.75 nm, respectively. The band-gap values was obtained 8.9–2.7 eV for SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan nanocomposites, respectively. The photocatalytic performances of the three prepared nano-photocatalyst were examined by UV-light with help the photo-degradation of ethidium bromide. The CoS2–SiO2/Chitosan nanocomposites photocatalyst shows the high amount of photocatalytic degradation (96.00%) in comparison to SiO2, and CoS2–SiO2 nanomaterials. The results demonstrated that the all prepared nano-photocatalyst under UV irradiation was in pH 5 at 40 min. The antifungal and antibacterial of the SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan were examined. The CoS2–SiO2/Chitosan (high 11.00 mm inhibition zone) has appropriate antimicrobial activity compared with pure SiO2.


SiO2 CoS2 Chitosan Photocatalytic activity Antibacterial 



The authors are grateful for the support of this research by the Islamic Azad University of Central Tehran.


  1. 1.
    A. Tadjarodi, M. Imani, H. Kerdari, Mater. Res. Bull. 48, 935–942 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Dhatshanamurthi, B. Subash, M. Shanthi, Mater. Sci. Semicond. Process. 35, 22–29 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Millesi, M. Schilirò, F. Greco, I. Crupi, G. Impellizzeri, F. Priolo, R.G. Egdell, A. Gulino, Mater. Sci. Semicond. Process. 42, 85–88 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Sudheer Khan, J. Photochem. Photobiol. B 142, 1–7 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.V. Saini, J. Clean. Prod. 165, 431–451 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Sharma, B. Thakur, M. Naushad, A.H. Al-Muhtaseb, G.T. Mola, Mater. Chem. Phys. 193, 129–139 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Naushad, G. Sharma, A. Kumar, S. Sharma, M.R. Khan, Int. J. Biol. Macromol. 106, 1–10 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Sharma, A. Kumar, M. Naushad, A. Kumar, M.R. Khan, J. Clean. Prod. 172, 2919–2930 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Sharma, A. Kumar, K. Devi, M. Naushad, S. Sharma, F.J. Stadler, Int. J. Biol. Macromol. 114, 295–305 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Kumar, M. Naushad, A. Rana, M.R. Khan, Int. J. Biol. Macromol. 104, 1172–1184 (2017)CrossRefGoogle Scholar
  11. 11.
    F. Li, J. Wang, L. Zheng, Y. Zhao, X. Sun, J. Power Sources 384, 1–9 (2018)CrossRefGoogle Scholar
  12. 12.
    A.M. Nawar, M.M. Makhlouf, J. Alloys Compd. 767, 1271–1281 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Zhu, Z. Cheng, Q. Xiang, X. Chen, J. Xu, Sens. Actuators B 248, 785–792 (2017)CrossRefGoogle Scholar
  14. 14.
    F. Luan, S. Zhang, D. Chen, K. Zheng, X. Zhuang, Talanta, 182, 529–535 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Govindasamy, S. Shanthi, E. Elaiyappillai, S. Wang, C. Muthamizhchelvan, Electrochim. Acta 293, 328–337 (2019)CrossRefGoogle Scholar
  16. 16.
    G. Ravi Kumar, M. Gopi Krishna, M.C. Rao, Optik, 173, 78–87 (2018)CrossRefGoogle Scholar
  17. 17.
    Z. Ni, W. Zhang, G. Jiang, X. Wang, F. Dong, Chin. J. Catal. 38, 1174–1183 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Meng, W. Oh, Chin. J. Catal. 33, 1495–1501 (2012)CrossRefGoogle Scholar
  19. 19.
    I. Grčić, D. Vrsaljko, Z. Katančić, S. Papić, J. Water Process Eng. 5, 15–27 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Cao, L. Xiao, J. Li, C. Cao, J. Wang, Powder Technol. 292, 186–194 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, M. Naushad, Colloids Surf. B 157, 456–463 (2017)CrossRefGoogle Scholar
  22. 22.
    G. Sharma, B. Thakur, M. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Environ. Chem. Lett. 16, 113–146 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, F.J. Stadler, Sep. Purif. Technol. 211, 895–908 (2019)CrossRefGoogle Scholar
  24. 24.
    D. Pathania, R. Katwal, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, Int. J. Biol. Macromol. 87, 366–374 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Pathania, G. Sharma, M. Naushad, A. Kumar, J. Ind. Eng. Chem. 20, 3596–3603 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Jbeli, A.M. Ferraria, A.M.B. do Rego, S. Boufi, S. Bouattour, Int. J. Biol. Macromol. 116, 1098–1104 (2018)CrossRefGoogle Scholar
  27. 27.
    Z.-B. Zheng, J.-J. Sun, A. Fakhri, A. Surendar, A.Z. Ibatova, J.-B. Liu, J. Mater. Sci.: Mater. Electron. 29, 18531–18539 (2018)Google Scholar
  28. 28.
    S. Yaparatne, C.P. Trippa, A. Amirbahman, J. Hazard. Mater. 346, 208–217 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Ren, W. Qiu, H. Zhang, Z. He, Y. Chen, J. Mol. Catal. A: Chem. 398, 215–222 (2015)CrossRefGoogle Scholar
  30. 30.
    P. Eskandari, F. Kazemi, J. Photochem. Photobiol. A 364, 233–239 (2018)CrossRefGoogle Scholar
  31. 31.
    B. Czech, K. Tyszczuk-Rotko, Sep. Purif. Technol. 206, 343–355 (2018)CrossRefGoogle Scholar
  32. 32.
    Z.-D. Meng, K. Ullah, L. Zhu, S. Ye, W.-C. Oh, Mater. Sci. Semicond. Process. 27, 173–180 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Zhu, S.-B. Jo, S. Ye, K. Ullah, Z.-D. Meng, W.-C. Oh, J. Ind. Eng. Chem. 22, 264–271 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Jbeli, Z. Hamden, S. Bouattour, A.M. Ferraria, D.S. Conceição, L.F.V. Ferreira, M.M. Chehimi, A.M.B. Rego, M.R. Vilar, S. Boufi, Carbohyd. Polym. 199, 31–40 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Hosseini, A. Pourabadeh, A. Fakhri, J. Hallajzadeh, S. Tahami, Int. J. Biol. Macromol. 118, 2108–2112 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, S. Tahami, Int. J. Biol. Macromol. 120, 1789–1793 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Hosseini, M. Sarafbidabad, A. Fakhri, Z.N. Mohammadi, S. Tahami, Int. J. Biol. Macromol. 118, 1494–1500 (2018)CrossRefGoogle Scholar
  38. 38.
    V.K. Gupta, A. Fakhri, S. Agarwal, M. Azad, Int. J. Biol. Macromol. 103, 1–7 (2017)CrossRefGoogle Scholar
  39. 39.
    W. Gao, R. Razavi, A. Fakhri, Int. J. Biol. Macromol. 114, 357–362 (2018)CrossRefGoogle Scholar
  40. 40.
    M. Cheesbrough, District Laboratory Practice in Tropical Countries, Part 2, 2nd edn. (Cambridge University Press, Fakenham, 2000)Google Scholar
  41. 41.
    C.M. Chang, C.J. Yang, K.-K. Wang, J.-K. Liu, J.C. Huang, Surf. Coat. Technol. 327, 75–82 (2017)CrossRefGoogle Scholar
  42. 42.
    G.F. Cerofolini, C. Galati, L. Renna, Surf. Interface Anal. 35, 968–973 (2003)CrossRefGoogle Scholar
  43. 43.
    S.C. Petitto, M.A. Langell, J. Vac. Sci. Technol. A 22, 1690–1696 (2004)CrossRefGoogle Scholar
  44. 44.
    K. Kotsisa, V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490–1498 (2006)CrossRefGoogle Scholar
  45. 45.
    A. Fakhri, R. Khakpour, J. Lumin. 160, 233–237 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Fakhri, D.S. Kahi, J. Photochem. Photobiol. B 166, 259–263 (2017)CrossRefGoogle Scholar
  47. 47.
    D. Zheng, Y.-P. Wu, Z.-Y. Li, Z.-B. Cai, RSC Adv. 7, 14060 (2017)CrossRefGoogle Scholar
  48. 48.
    B. Zeng, W. Zeng, W. Liu, C. Jin, J. Phys. Chem. Solids 115, 97–102 (2018)CrossRefGoogle Scholar
  49. 49.
    W. Li, T.X. Wang, X. Dai, X. Wang, C. Zhai, Y. Ma, S. Chang, Solid State Commun. 225, 32–37 (2016)CrossRefGoogle Scholar
  50. 50.
    A.F. Garrido-Castro, M.C. Maestro, J. Alemán, Tetrahedron Lett. 59, 1286–1294 (2018)CrossRefGoogle Scholar
  51. 51.
    K.B. Fontana, G.G. Lenzi, E.C.R. Seára, E.S. Chaves, Ecotoxicol. Environ. Saf. 151, 127–131 (2018)CrossRefGoogle Scholar
  52. 52.
    F. Liu, Y. Xie, C. Yu, X. Liu, Y. Dai, L. Liu, Y. Ling, RSC Adv. 48, 24056–24063 (2015)CrossRefGoogle Scholar
  53. 53.
    Y.-X. Tan, Y.-P. He, D. Yuan, J. Zhang, Appl. Catal. B 221, 664–669 (2018)CrossRefGoogle Scholar
  54. 54.
    J. Lopez-Penalver, J.M. Sanchez-Polo, C.V. Gómez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 85, 1325–1333 (2010)CrossRefGoogle Scholar
  55. 55.
    C. Gomez-Pacheco, M. Sanchez-Polo, J. Rivera-Utrilla, J. Lopez-Penalver, Chem. Eng. J. 187, 89–95 (2012)CrossRefGoogle Scholar
  56. 56.
    K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd. 727, 792–820 (2017)CrossRefGoogle Scholar
  57. 57.
    V.L. Prasanna, R. Vijayaraghavan, Mater. Sci. Eng. C, 77, 1027–1034 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ali Fakhri
    • 1
  • Alireza Feizbakhsh
    • 1
    Email author
  • Elaheh Konoz
    • 1
  • Ali Niazi
    • 1
  1. 1.Department of Chemistry, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations