Preparation of Rigid Bentonite/PAM Nanocomposites by an Adiabatic Process: Influence of Load Content and Nano-structure on Mechanical Properties and Glass Transition Temperature

  • Souhila Khobzaoui
  • Lahcene TennougaEmail author
  • Ismet Kamel Benabadji
  • Asma Mansri
  • Brahim Bouras


Polyacrylamide bentonite nanocomposites were prepared in an aqueous suspension. The suspension was obtained by mixing the dispersion of both bentonite and acrylamide in bidistilled water, and followed by adiabatic processes of radical polymerization with ammonium persulfate as initiator. The percentage by weight of bleaching clay (BC) was fixed at 1%, 3% and 5%. Thin films were obtained using an evaporation solution (thickness of films was in the range 100–300 μm). X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and micro-indentation technique were used to characterize the obtained films. SEM micrographs show an exfoliated structure in polymer composites that originates from the nature and method of polymerization used (a radical adiabatic polymerization under neutral condition). DSC measurements reveal that the glass transition temperature increases with percentage in weight of BC. The mechanical tests confirm that the obtained materials have high values of hardness. We conclude that our materials have a special nano-structure that determines the good mechanical properties. It is also shown that average micro-hardness decreases with increasing amount of BC which implies some changes from the initial structure.


Polyacrylamide (PAM) Bleaching clay BC Adiabatic processes Micro-indentation Glass temperature 



The authors thank the National Agency for the Development of University Research (ANDRU) in Algeria for financial support. S. K. is also indebted to IEM-CSIC (Madrid, Spain) and Dr. Fernando Ania for hosting her at the Macromolecular Physics Department during the performance of the surface mechanical experiments.


  1. 1.
    Z. Orolinoa, A. Mockovčiaková, S. Dolinská, J. Briančin, Arhiv za Tehnicke Nauke 7, 49 (2012)Google Scholar
  2. 2.
    A. Lopez-Galindo, C. Veseras, P. Cerezo, Appl. Clay Sci. 36, 51 (2007)CrossRefGoogle Scholar
  3. 3.
    T.S. Anirudhan, P.S. Suchithra, Chem. Eng. J. 156, 146 (2010)CrossRefGoogle Scholar
  4. 4.
    G.H. Michler, F.J. Baltá-Calleja, 1st Eds. (CRC Press, Taylor and Francis Group, Boca Raton, 2005)Google Scholar
  5. 5.
    F.J. Baltá-Calleja, Adv. Polym. Sci. 66, 117 (2005)CrossRefGoogle Scholar
  6. 6.
    F.J. Baltá-Calleja, Trends Polym. Sci. 2, 419 (1994)Google Scholar
  7. 7.
    L. Chun-Ki, C. Hoi-Yan, L. Kin-Tak, Z. Li-Min, H. Man-Wai, D. Huib, Composites B 36, 263 (2005)Google Scholar
  8. 8.
    F. Fu. Shao-Yun, L. Xi-Qiao, Bernd, Y.-W. Mai, Composites B 39, 933 (2008)CrossRefGoogle Scholar
  9. 9.
    B. Long, C. Wang, W. Lin, Y. Huang, J. Sun, Compos. Sci. Technol. 67, 2770 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Hua, L. Shen, H. Yang, M. Wang, T. Liu, T. Lianga, J. Zhanga, Polym. Testing 25, 492 (2006)CrossRefGoogle Scholar
  11. 11.
    T.Y. Tsai, M.J. Lin, Y.C. Chuang, P.C. Chou, Mater. Chem. Phys. 138, 230 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Djavanroodi, A.A. Zolfaghari, M. Ebrahimi, K. Nikbin, Acta Metall. Sin. (Engl. Lett) 27, 95 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Bouras, A. Mansri, L. Tennouga, B. Grassl, Res. Chem. Intermed. 41, 5839 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Zhu, O. Jian, S. Paillet, J. Eur. Polym. J. 43, 824 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Belkaid, K. Tebbji, A. Mansri, A. Chetouani, B. Hammouti, Res. Chem. Intermed. 38, 2309 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Mansri, A. Beladraoua, B. Bouras, J. Mater. Environ. Sci. 7, 808 (2016)Google Scholar
  17. 17.
    A. Mansri, S. Ramdani, Res. Chem. Intermed. 41, 1765 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Haiyan, P. Mingwang, L. Xiucuo, S. Xudong, Z. liuchang, Polym. Int. 53, 225 (2004)CrossRefGoogle Scholar
  19. 19.
    E.P. Giannelis, R. Krishnamoorti, E. Manias, Adv. Polym. Sci. 138, 107 (1999)CrossRefGoogle Scholar
  20. 20.
    A.B. Morgan, J.W. Gilman, Appl. Polym. 87, 1329 (2003)CrossRefGoogle Scholar
  21. 21.
    X. Zhao, Q. Zhang, D. Chen, Macromolecules 43, 2357 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Dandurand, V. Samouillan, C. Lacabane, A. Pepe, B. Bochicchio, J. Therm. Anal. Calorim. 120, 1 (2015)CrossRefGoogle Scholar
  23. 23.
    M.N.A. Perez, Doctorate Thesis. Institut National Polytechnique de Grenoble France (2008)Google Scholar
  24. 24.
    M.F. Mina, G.H. Michler, F.J. Baltá-Calleja, J. Bangladesh Acad. Sci. 33, 15 (2009)CrossRefGoogle Scholar
  25. 25.
    F. Ania, G. Broza, M.F. Mina, K. Schulte, Z. Roslaniec, F.J. Baltá-Calleja, Compos. Interfaces 13, 33 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Souhila Khobzaoui
    • 1
  • Lahcene Tennouga
    • 1
    Email author
  • Ismet Kamel Benabadji
    • 1
  • Asma Mansri
    • 1
  • Brahim Bouras
    • 1
  1. 1.Laboratoire d’Application des Electrolytes et des Polyélectrolytes Organiques (LAEPO), Département de ChimieUniversité de TlemcenTlemcenAlgeria

Personalised recommendations