Advertisement

Preparation and Characteristics Study of Polystyrene/Porous Silicon Photodetector Prepared by Electrochemical Etching

  • Hasan A. Hadi
  • Raid A. IsmailEmail author
  • Nahida J. Almashhadani
Article
  • 36 Downloads

Abstract

Novel doped polystyrene (PS)/porous silicon (PSi) heterojunction photodetector prepared by solution cast and electrochemical techniques is proposed here. The structural and optical properties of polystyrene film and porous silicon surface were investigated using X-ray diffraction (XRD), scanning electron microscope, Fourier transformed infrared (FT-IR), and UV–Vis spectrophotometer. XRD data confirmed that the PS film was amorphous in nature and the porous silicon was nanocrystalline. The optical properties showed that the average optical transmittance and the optical energy gap of PS film were 80% and 3.2 eV, respectively. The electrical properties revealed that the electrical resistivity and mobility of the doped polystyrene film were 3 × 104 Ω cm and 4.5 × 10−5 cm2 V−1 s−1, respectively. Photoluminescence PL of porous silicon was investigated. Dark I–V characteristics revealed that the PS/PSi heterojunctions prepared with an etching time of 5 min exhibited better-rectifying properties than that of PS/PSi heterojunction prepared at 10 min. The figures of merit of the photodetectors such as spectral responsivity, external quantum efficiency, and detectivity were investigated and compared with Au/PSi Schottky photodetectors. Minority carrier lifetime of the photodetectors was measured using open circuit voltage decay method.

Keywords

Porous silicon Polystyrene Electrochemical etching Photodetector 

Notes

References

  1. 1.
    R. Dubey, D. Gautam, J. Opto. Electr. Biomed. Mater. 1, 8e14 (2009)Google Scholar
  2. 2.
    M. Ramesh, H. Nagaraja, Mater. Today Chem. 3, 10e14 (2017)Google Scholar
  3. 3.
    J. Estevez, J. Arriaga, A. Mendez-Blas, J. Appl. Phys. 111, 013103 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Ismail, Mod. Phys. Lett. B 27, 1350217 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Abd Rahim, N. Sah, I. Hamzah, S. Sulaiman, M. Zahidi, Appl. Mech. Mater. 815, 121 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Ismail, K. Khashan, A. Alwan, Silicon 9, 321 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Habubi, R. Ismail, A. Abd, W. Hamoudi, Indian J. Pure Appl. Phys. 53, 718 (2015)Google Scholar
  8. 8.
    N. Naderi, M. Hashim, J. Alloy. Compd. 552, 356 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Martínez, O. Ocampo, Y. Kumar, V. Agarwal, Nanoscale Res. Lett. 9, 437 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Dhar, S. Chakrabarti, Semicond. Sci. Technol. 15, L39 (2000)CrossRefGoogle Scholar
  11. 11.
    R. Ismail, e-J. Surf. Sci. Nanotechnol. 8, 388 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Ismail, A. Alwan, A. Ahmed, Appl. Nanosci. 7, 9 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Spurgeon, S. Boettcher, M. Kelzenberg, B. Brunschwig, H. Atwater, N. Lewis, Adv. Mater. 22, 3277 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Kim, S. Joo, K. Lee, J. Kim, D. Shin, S. Kim, S. Choi, ACS Appl. Mater. Interfaces 6, 20880 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Dhyani, P. Dwivedi, S. Dhanekar, S. Das, Appl. Phys. Lett. 111, 191107 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, Y. Guo, S. Batra, E. Wang, Y. Wang, X. Liu, Y. Wang, M. Cakmak, Nanoscale 7, 37 (2015)Google Scholar
  17. 17.
    Z. Rymansaib, P. Iravani, E. Emslie, M. Medvidović-Kosanović, M. Sak-Bosnar, R. Verdejo, F. Marken, Electroanalysis 28, 1517 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Ismail, N. Almashhadani, R. Sadik, Appl. Nanosci. 7, 109 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Ding, B. Qu, J. Appl. Polym. Sci. 101, 3758 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Aziz, S. Hussein, A. Hussein, S. Saeed, Int. J. Met. 2013, 1 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Sangawar, M. Golchha, Int. J. Sci. Eng. Res. 4, 2700 (2013)Google Scholar
  22. 22.
    M. Ligeon, F. Mullen, R. Romestain, J. Vial, J. Lumin. 57, 111 (1993)CrossRefGoogle Scholar
  23. 23.
    H. Yorikawa, S. Muramatsu, J. Lumin. 87–89, 423 (2000)CrossRefGoogle Scholar
  24. 24.
    A. EI-Agramy, A. Shabaka, Polym. Degrad. Stab. 37, 159 (1992)CrossRefGoogle Scholar
  25. 25.
    H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezrii, M. Salami -Kalajahi, RSC Adv. 4, 24439 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, B. Park, Y. Kim, H. Choi, J. Mater. Chem. 21, 17396 (2011)CrossRefGoogle Scholar
  27. 27.
    E. Biazar, R. Zeinali, N. Montazeri, et al., Int. J. Nanomed. 9, 549 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Ismail, A. Ali, K. Hasson, Micro Nano Lett. 7, 536 (2012)CrossRefGoogle Scholar
  29. 29.
    D. Halliday, J. Eggleston, P. Adams, I. Pentland, A. Monkman, Synth. Met. 85, 1245 (1997)CrossRefGoogle Scholar
  30. 30.
    H. Hadi, R. Ismail, N. Habubi, Indian J. Phys. 88, 59 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Ismail, S. Al-Jawad, N. Hussein, Appl. Phys. A 117, 1977 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Ismail, A. Al-Samarai, A. Ali, Optik 168, 302 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Hadi, F. Zain Al-Abedeen, Int. J. Emerg. Res. Manag. Technol. 3, 166 (2014)Google Scholar
  34. 34.
    F. Fonthal, T. Trifonov, Á Rodríguez, J. Pallarès, J. Ferré-Borrull, J. Pallarès, Conference: Eurosensor XIX 2005, At: Barcelona, Vol. 1, Sep. 2005Google Scholar
  35. 35.
    M. Vaqueiro-Contreras. V. Markevich. J. Mullins. M. Halsall. L. Murin. R. Falster. J. Binns. J. Coutinho. A.R. Peaker, J. Appl. Phys. 123, 161415 (2018)CrossRefGoogle Scholar
  36. 36.
    R. Ismail, W. Hamoudi, K. Saleh, Mater. Sci. Semicond. Process. 21, 194 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hasan A. Hadi
    • 1
  • Raid A. Ismail
    • 2
    Email author
  • Nahida J. Almashhadani
    • 2
  1. 1.Department of Physics, Education FacultyUniversity of Al-MustansiriyahBaghdadIraq
  2. 2.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations