Advertisement

The Modification of Structural, Optical and Antibacterial Activity Properties of Rare Earth Gadolinium-Doped ZnO Nanoparticles Prepared by Co-Precipitation Method

  • C. SelvarajuEmail author
  • R. Karthick
  • R. Veerasubam
Article
  • 36 Downloads

Abstract

Gd doped ZnO nanoparticles with differing dopant concentration are synthesized by co-precipitation method and analysed for their structural, morphological and optical properties. XRD profiles confirmed that the synthesized material is nano-crystalline ZnO with well-crystalline and hexagonal wurtzite structure. FESEM images delineated hexagonal formed in ZnO nanoparticles. The assimilation band gap observed 463 cm−1 is credited to the ZnO extending vibrations and EDX affirms the synthesis of undoped and Gd doped ZnO nanoparticles. Optical properties of the nanoparticles were examined by photoluminescence study and it uncovered band edge emission for all synthesized materials with additional emissions in visible region because of the presence of opening and interstitial deformities. The antibacterial effectiveness of Gd doped ZnO nanoparticles were investigated against a Gram positive and Gram negative bacteria.

Keywords

Zinc oxide Rare earth Photoluminescence Gd doping Antibacterial activity 

Notes

References

  1. 1.
    C. Klingshirn, ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)CrossRefGoogle Scholar
  2. 2.
    N.R. Panda, D. Sahu, S. Mohanty, B.S. Acharya, Growth morphology and optical properties of ZnO nanostructures on different substrates. J. Nanosci. Nanotechnol. 13(1), 427–433 (2013)CrossRefGoogle Scholar
  3. 3.
    N.R. Panda, B.S. Acharya, P. Nayak, Sonochemical synthesis of nitrogen doped ZnOnanorods: effect of anions on growth and optical properties. J. Mater. Sci.: Mater. Electron. 24(10), 4043–4049 (2013)Google Scholar
  4. 4.
    Y. Sivalingam, E. Martinelli, A. Catini, G. Magna, G. Pomarico, F. Basoli, R. Paolesse, C.D. Natale, Gas-sensitive photoconductivity of porphyrin-functionalized ZnO nanorods. J. Phys. Chem. C 116(16), 9151–9157 (2012)CrossRefGoogle Scholar
  5. 5.
    A.B. Djurisic et al., Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)CrossRefGoogle Scholar
  6. 6.
    L.S. Mende, J.L.M. Driscoll, ZnO–nanostructures, defects and devices. Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  7. 7.
    N.R. Panda, B.S. Acharya, Impurity induced crystallinity and optical emissions in ZnO nanorod arrays. Mater. Res. Express 2, 015011 (2014)CrossRefGoogle Scholar
  8. 8.
    P.P. Murmu, R.J. Mendelsberg, J. Kennedy, D.A. Carder, B.J. Ruck, A. Markwitz, R.J. Reeves, P. Malar, T. Osipowicz, Structural and photoluminescence properties of Gd implanted ZnO single crystals. J. Appl. Phys. 110, 033534 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Maa, Z. Wang, The optical properties of rare earth Gd doped ZnO nanocrystals. Mater. Sci. Semicond. Process. 15, 227–231 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Aggarwal, K. Kaur, A. Vasishth, N.K. Verma, Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 13006–13011 (2016)Google Scholar
  11. 11.
    X.Y. Yi, C.Y. Ma, F. Yuan, N. Wang, F.W. Qin, B.C. Hu, Q.Y. Zhang, Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films. Thin Solid Films 636, 339–345 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Sharma, S. Dhar, B.P. Singh, T. Kundu, M. Spasova, M. Farle, Influence of Tb doping on the luminescence characteristics of ZnO nanoparticles. J. Nanopart. Res. 14, 676 (2012)CrossRefGoogle Scholar
  13. 13.
    P. Pandey, M.R. Parra, R. Kurchania, F.Z. Haque, Synthesis and optical properties of pure and Eu+ 3 ion doped ZnO nanoparticles prepared via Sol-Gel method, in Physics of semiconductor devices, environmental science and engineering, ed. by V. Jain, A. Verma (Springer, Cham, 2013)Google Scholar
  14. 14.
    S. Dharaa, A.K. Raychaudhuri, Enhancement in red emission at room temperature from europium doped ZnO nanowires by 1, 10 phenanthroline-europium interface induced resonant excitations. AIP Adv. 7, 025306 (2017)CrossRefGoogle Scholar
  15. 15.
    L.C. Chao, P.C. Chiang, S.H. Yang, J.W. Huang, C.C. Liau, J.S. Chen, C.Y. Su, Zinc oxide nanodonut prepared by vapor-phase transport process. Appl. Phys. Lett. 88, 251111 (2006)CrossRefGoogle Scholar
  16. 16.
    J.A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, S. Zazubovich, A role of Gd3+ in scintillating processes in Tb-doped Na–Gd phosphate glasses. J. Lumin. 94–95 321–324 (2001)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32(4), 1185–1192 (2011)CrossRefGoogle Scholar
  18. 18.
    P. Kaur, S. Kumar, C.L. Chen, Y.-Y. Hsu, T.-S. Chan, C.-L. Dong, C. Srivastava, A. Singh, S.M. Rao, Investigations on structural, magnetic and electronic structure of Gd doped ZnO nanostructures synthesized using sol–gel technique. Appl. Phys. A 122, 161 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Liu, P.Y. Yu, Z. Ma, S.S. Mao, Ferromagnetism in GaN:Gd: a density functional theory study. Phys. Rev. Lett. 100, 127203 (2008)CrossRefGoogle Scholar
  20. 20.
    G. Vijayaprasath, R. Murugan, Y. Hayakawa, G. Ravi, Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J. Lumin. 178, 375–383 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mcklich, J. Fassbender, T. Herrmannsdörfer, T. Bianchi, Ferromagnetic Gd-implanted ZnO single crystals. J. Appl. Phys. 99, 063906 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Ungureanu, H. Schmidt, Q. Xu, H. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd). Superlattices Microstruct. 42, 231–235 (2007)CrossRefGoogle Scholar
  23. 23.
    I.S. Roqan, S. Venkatesh, Z. Zhang, S. Hussain, I. Bantounas, J.B. Franklin, T.H. Flemban, B. Zou, J.-S. Lee, U. Schwingenschlog, P.K. Petrov, M.P. Ryan, N.M. Alford, Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes. J. Appl. Phys. 117, 073904 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Mithal, T. Kundu, Effect of Gd3+ doping on structural and optical properties of ZnO,Nanocrystals. Solid State Sci. 68, 47–54 (2017)CrossRefGoogle Scholar
  25. 25.
    G.K. Reddy, A.J. Reddy, R.H. Krishna, B.M. Nagabhushana, G.R. Gopal, Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 5, 350–356 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Rani, B. Lal, S. Saxena, S. Shukla, Photoluminescence properties of Gd:ZnO nano phosphor. J. Sol-Gel. Sci. Technol. 81, 586–592 (2017)CrossRefGoogle Scholar
  27. 27.
    D. Shikha et al., Structural and optical properties of ZnO thin films deposited by sol–gel method: effect of stabilizer concentration. J. Mater. Sci.: Mater. Electron. 26(7), 4902–4907 (2015)Google Scholar
  28. 28.
    T. Thangeeswari, M. Priya, J. Velmurugan, Enhancement in the optical and magnetic properties of ZnO: Co implanted by Gd3+ nanoparticles. J. Mater. Sci.: Mater. Electron. 26(4), 2436–2444 (2015)Google Scholar
  29. 29.
    S. Kumar, P.D. Sahare, Gd3+ Incorporated ZnO nanoparticles: a versatile material. Mater. Res. Bull. 51, 217–223 (2014)CrossRefGoogle Scholar
  30. 30.
    K. Ravichandran, K. Karthika, B. Sakthivel, N. Jabena Begum, S. Snega, K. Swaminathan, V. Senthamilselvi, Inducing superparamagnetic behavior and enhancing antibacterial efficiency of ZnO nanopowders through Mn + F doping. J. Magn. Magn. Mater. 358–359, 52 (2014)Google Scholar
  31. 31.
    Y.J. Xing, Z.H. Xi, Z.Q. Xue et al., Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)CrossRefGoogle Scholar
  32. 32.
    K. Chitra, K. Reena, A. Manikandan et al., Antibacterial studies and effect of poloxamer on gold nanoparticles by zingiber officinale extracted green synthesis. J. Nanosci. Nanotechnol. 15, 4984–4991 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Chitra, A. Manikandan, S. Moortheswaran et al., Zingiber officinale extracted green synthesis of copper nanoparticles: structural, morphological and antibacterial studies. Adv. Sci. Eng. Med. 7, 710–716 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Vasanthi, K. Ravichandran, N. Jabena Begum, G. Muruganantham, S. Snega, A. Panneerselvam, P. Kavitha, Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. 55, 180 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsH. H. The Rajah’s College (Autonomous)PudukkottaiIndia
  2. 2.PG & Research Department of PhysicsNational College (Autonomous)TiruchirappalliIndia
  3. 3.PG & Research Department of PhysicsGovernment Arts College, MelurMaduraiIndia

Personalised recommendations