Partial Oxidation of Sn2+ Induced Oxygen Vacancy Overspread on the Surface of SnO2−x/g-C3N4 Composites for Enhanced LED-Light-Driven Photoactivity

  • Liying HuangEmail author
  • Fei Zhang
  • Yeping Li
  • Penghui Ding
  • Pengpeng Li
  • Hui Xu
  • Huaming LiEmail author


Photocatalysis has been intensively used for wastewater remediation, but suffers from unsatisfactory efficiency for treating complex wastewater system, which includes antibiotic, organic dye and bacteria. Herein, we prepared novel SnO2−x/g-C3N4 photocatalysts and introduced oxygen vacancy by partial oxidation of Sn2+ under solvothermal condition. The oxygen vacancy was demonstrated by the X-ray photoelectron and electron spin resonance spectra. Compared with pure SnO2−x, g-C3N4 and stoichiometric SnO2/g-C3N4 composite, the optimum SnO2−x/g-C3N4 composite exhibited higher photoactivity for removing antibiotic (tetracycline hydrochloride) and organic dye (rhodamine B) under light-emitting diode (LED) track light irradiation. Furthermore, the optimum SnO2−x/g-C3N4 composite could completely inactivate Escherichia coli within 30 min. The remarkable performance of SnO2−x/g-C3N4 was mainly ascribed to oxygen vacancy: (i) enhanced the separation efficiency of photo-induced charge carriers between SnO2−x and g-C3N4; (ii) broadened light absorption range due to the formation of SnO2−x with narrow band gap. This work provides a new idea for designing g-C3N4-based photocatalyst with oxygen vacancy toward wastewater remediation.


SnO2−x/g-C3N4 Oxygen vacancy LED light Photocatalytic Disinfection 



The authors genuinely appreciate the financial support of this work from the National Nature Science Foundation of China (21406094, 21476097, and 21676128), Postdoctoral Foundation of China (2015M571693) and Foundation of Jiangsu University (14JDG184).

Supplementary material

10904_2018_1050_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1164 KB)


  1. 1.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Nature 452, 301–310 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Di, J. Xia, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, M. Li, Appl. Catal. B 168–169, 51–61 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Wang, W. Zhang, W. Zhu, L. Yan, S. Li, K. Chen, N. Hu, Y. Suo, J. Wang, Chem. Eng. J. 348, 292–300 (2018)CrossRefGoogle Scholar
  4. 4.
    V. Likodimos, D.D. Dionysiou, P. Falaras, Rev. Environ. Sci. BioTechnol. 9, 87–94 (2010)CrossRefGoogle Scholar
  5. 5.
    P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, Y. He, J. Colloid Interface Sci. 534, 163–171 (2019)CrossRefGoogle Scholar
  6. 6.
    J. Yu, Z. Chen, Y. Wang, Y. Ma, Z. Feng, H. Lin, Y. Wu, L. Zhao, Y. He, J. Mater. Sci. 53, 7453–7465 (2018)CrossRefGoogle Scholar
  7. 7.
    W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun, S. Wei, J. Am. Chem. Soc. 139, 3021–3026 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Zhang, Z.A. Lan, X. Wang, Chem. Sci. 8, 5261–5274 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Jiang, X. Liu, Q. Chen, R. Jin, Y. Lu, J. Yu, Y. Wu, Y. He, J Inorg. Organomet. Polym. 27, 1683–1693 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Liu, Y. Xu, J. Wang, M. Xie, W. Wei, L. Huang, H. Xu, Y. Song, H. Li, Colloids Surf. A 553, 114–124 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Huang, Y. Xu, Q. Liu, T. Zhou, Y. Zhao, L. Jing, H. Xu, H. Li, Appl. Catal. B 218, 174–185 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Li, X. Sun, L. Zhang, S. Sun, W. Wang, J. Mater. Chem. A 6, 3005–3011 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Feng, H. Chen, F. Jiang, X. Wang, J. Colloid Interface Sci. 509, 298–306 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, J. Mater. Chem. A 3, 5189–5196 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 139, 18093–18100 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Song, Y. Wu, D. Pan, F. Cai, G. Xiao, Mol. Catal. 436, 228–236 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Verma, R.B.N. Baig, M.N. Nadagouda, R.S. Varma, ACS Sustain. Chem. Eng. 4, 1094–1098 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song, J. Ye, Small 14, e1703277 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Kim, G. Moon, H. Kim, Y. Mun, P. Zhang, J. Lee, W. Choi, J. Catal. 357, 51–58 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS. Catal. 6, 7021–7029 (2016)CrossRefGoogle Scholar
  22. 22.
    M.Q. Wen, T. Xiong, Z.G. Zang, W. Wei, X.S. Tang, F. Dong, Opt. Express 24, 10205–10212 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, Y. Huang, L. Chen, M. Chen, J. Cao, W. Ho, S.C. Lee, J. Mater. Chem. A 6, 972–981 (2018)CrossRefGoogle Scholar
  24. 24.
    G. Dong, D.L. Jacobs, L. Zang, C. Wang, Appl. Catal. B 218, 515–524 (2017)CrossRefGoogle Scholar
  25. 25.
    Q. Guo, Y. Zhang, H.-S. Zhang, Y. Liu, Y.-J. Zhao, J. Qiu, G. Dong, Adv. Funct. Mater. 27, 1703711 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Chen, D. Jiang, M. Zhu, T. Shi, H. Li, K. Wang, J. Alloys Compd. 741, 1203–1211 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Sudrajat, J. Solid State Chem. 257, 26–33 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Liu, X. Xu, Z. Si, Z. Wang, R. Ran, Y. He, D. Weng, Catal. Commun. 106, 55–59 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Dou, S. Zheng, Y. Zhang, Catal. Lett. 148, 601–611 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Kumar, S. Karthikeyan, A. Lee, Catalysts 8, 74 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Yu, Q. Nong, X. Jiang, X. Liu, Y. Wu, Y. He, Sol. Energy 139, 355–364 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Seza, F. Soleimani, N. Naseri, M. Soltaninejad, S.M. Montazeri, S.K. Sadrnezhaad, M.R. Mohammadi, H.A. Moghadam, M. Forouzandeh, M.H. Amin, Appl. Surf. Sci. 440, 153–161 (2018)CrossRefGoogle Scholar
  33. 33.
    N. Li, K. Du, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H.-M. Cheng, J. Mater. Chem. A 1, 1536–1539 (2013)CrossRefGoogle Scholar
  34. 34.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7, 9023–9030 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Yu, X. Fan, L. An, G. Liu, Z. Li, J. Liu, P. Hu, Carbon 128, 21–30 (2018)CrossRefGoogle Scholar
  36. 36.
    S. Tan, Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu, W. Zhou, J. Catal. 357, 90–99 (2018)CrossRefGoogle Scholar
  37. 37.
    Z. Lou, C. Xue, CrystEngComm 18(43), 8406–8410 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Liu, R. Wang, Z. Yang, H. Du, Y. Jiang, C. Shen, K. Liang, A. Xu, Chin, J. Catal. 36, 2135–2144 (2015)Google Scholar
  39. 39.
    K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Nano Res. 9, 1969–1982 (2016)CrossRefGoogle Scholar
  40. 40.
    Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Sol. Energy Mater. Sol. Cells 137, 175–184 (2015)CrossRefGoogle Scholar
  41. 41.
    G. Wang, Y. Yang, D. Han, Y. Li, Nano Today 13, 23–39 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Li, Y. Hu, S. Xie, Y. Huang, Y. Tong, X. Lu, Chem. Commun. 50, 4341–4343 (2014)CrossRefGoogle Scholar
  43. 43.
    X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, J. Mater. Chem. A 2, 18924–18928 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, H. Li, Appl. Surf. Sci. 283, 25–32 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Hou, R. Zhao, X. Li, X-H. Gao, Appl. Surf. Sci. 434, 1200–1209 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21, 1609–1612 (2009)CrossRefGoogle Scholar
  47. 47.
    Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou, S. Yuan, C. Zhang, W. Chen, Appl. Surf. Sci. 440, 258–265 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Zang, L. Li, X. Li, R. Lin, G. Li, Chem. Eng. J. 246, 277–286 (2014)CrossRefGoogle Scholar
  49. 49.
    D. Han, B. Jiang, J. Feng, Y. Yin, W. Wang, Angew. Chem. Int. Ed. 56, 7792–7796 (2017)CrossRefGoogle Scholar
  50. 50.
    H. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 53, 2910–2914 (2014)CrossRefGoogle Scholar
  51. 51.
    F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 136, 6826–6829 (2014)CrossRefGoogle Scholar
  52. 52.
    N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 138, 8928–8935 (2016)CrossRefGoogle Scholar
  53. 53.
    J. Li, X. Wu, W. Pan, G. Zhang, H. Chen, Angew. Chem. Int. Ed. 57, 491–495 (2018)CrossRefGoogle Scholar
  54. 54.
    H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, Nanoscale 6, 1406–1415 (2014)CrossRefGoogle Scholar
  55. 55.
    H. Yang, Z. Jin, H. Hu, Y. Bi, G. Lu, Appl. Surf. Sci. 427, 587–597 (2018)CrossRefGoogle Scholar
  56. 56.
    J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Appl. Catal. B 205, 281–291 (2017)CrossRefGoogle Scholar
  57. 57.
    K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, ACS Appl. Mater. Interfaces 9, 11577–11586 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of PharmacyJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.Institute for Energy ResearchJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations