Synthesis and Optical Properties of Layered Inorganic-Imidazoline Monoliths

  • K. FujiiEmail author
  • H. Hashizume
  • S. Shimomura
  • T. Wakahara
  • T. Ando


Two types of layered inorganic-imidazoline monoliths (Mg-Imidazoline and Ni-Imidazoline) are synthesized, and optical properties (ultraviolet–visible (UV–vis) absorption and emission) arise from both inorganic and organic moieties that are covalently bonded with each other in the layered monoliths. Monoliths are synthesized under hydrothermal conditions at 170 °C and/or 150 °C using triethoxy-3-(2-imidazolin-1-yl)propylsilane (ITES) and magnesium and/or nickel acetates. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirm the formation of layered compounds with interlayer distances of 1.8 nm in the Mg-Imidazoline and Ni-Imidazoline samples. Thermogravimetric and differential thermal analysis (TG-DTA) and elemental analyses show mole ratios of Mg/Si and Ni/Si and a considerable organic component. XRD and Fourier transform infrared spectroscopy (FT-IR) results show the inorganic moiety is similar to 2:1 phyllosilicates, and FT-IR spectra show several absorption peaks attributed to an imidazolyl group and Si–C. A model for Mg-Imidazoline and Ni-Imidazoline is then proposed, which has a layered structure, interlayer distance of 1.8 nm, and comprises inorganic layers with the imidazolyl group located between them. A cation (Mg2+ and/or Ni2+)-octahedral sheet is sandwiched between two siloxane sheets to form a 2:1 phyllosilicate-like layer, and each siloxane sheet bonds to the imidazolyl group via the S–C covalent bond. Mg-Imidazoline exhibits both absorption and emission in relation to the imidazolyl group, whereas Ni-Imidazoline exhibits scant emissions. The UV–Vis spectrum of Ni-Imidazoline shows absorption and weak absorption relating to the inorganic moiety and imidazolyl group, respectively.


Layered inorganic–organic hybrid Organically functionalized phyllosilicate Organoclay Luminescence Imidazoline Ni-phyllosilicate 



We are grateful to Mr. S. Takenouchi, NIMS, and Dr. A. Sato, A Rabbit Science Japan Co., Ltd., for the elemental analyses as well as Mr. K. Kosuda, NIMS, for the SEM observation. We thank Co-op Chemical Co., Ltd. (currently: Katakura & Co-op Agri Corporation) for their kind donation of the synthetic smectite sample SWN. This study was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Number 26420678).

Supplementary material

10904_2018_1048_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 82 KB)


  1. 1.
    V. Mittal, J. Mater. Sci. 43, 4972 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Czímerová, N. Iyi, J. Bujdák, J. Colloid Interface Sci. 320, 140 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Takagi, M. Eguchi, D.A. Tryk, H. Inoue, Langmuir 22, 1406 (2006)CrossRefGoogle Scholar
  4. 4.
    P.K. Ghosh, A.J. Bard, J. Phys. Chem. 88, 5519 (1984)CrossRefGoogle Scholar
  5. 5.
    N. Nhlapo, T. Motumi, E. Landman, S.M.C. Verryn, W.W. Focke, J. Mater. Sci. 43, 1033 (2008)CrossRefGoogle Scholar
  6. 6.
    E.P. Landman, W.W. Focke, J. Mater. Sci. 41, 2271 (2006)CrossRefGoogle Scholar
  7. 7.
    G.W. Brindley, G. Brown, Crystal Structures of Clay Minerals and Their X-ray Identification (Mineralogical Society, London, 1980)CrossRefGoogle Scholar
  8. 8.
    F. Bergaya, G. Lagaly, Handbook of Clay Science, 2nd edn. (Elsevier, Amsterdam, 2013)Google Scholar
  9. 9.
    The Clay Science Society of Japan, Nendo Handbook (Handbook of Clays and Clay Minerals), 3rd edn. (Gihodoshuppan, Tokyo, 2009)Google Scholar
  10. 10.
    G. Nagelschmidt, Mineral. Mag. 25, 140 (1938)Google Scholar
  11. 11.
    G.W. Brindley, Am. Miner. 40, 239 (1955)Google Scholar
  12. 12.
    M. Guillot, M. Richard-Plouet, S. Vilminot, J. Mater. Chem. 12, 851 (2002)CrossRefGoogle Scholar
  13. 13.
    N.T. Whilton, S.L. Burkett, S. Mann, J. Mater. Chem. 8, 1927 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Richard-Plouet, S. Vilminot, M. Guillot, New J. Chem. 28, 1073 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Fukushima, M. Tani, Bull. Chem. Soc. Jpn. 69, 3667 (1996)CrossRefGoogle Scholar
  16. 16.
    Y. Fukushima, M. Tani, J. Chem. Soc. Chem. Commun. 241 (1995)Google Scholar
  17. 17.
    K.A. Carrado, L. Xu, R. Csencsits, J.V. Muntean, Chem. Mater. 13, 3766 (2001)CrossRefGoogle Scholar
  18. 18.
    L. Mercier, G.A. Facey, C. Detellier, J. Chem. Soc. Chem. Commun., 2111 (1994)Google Scholar
  19. 19.
    R. Ruiz-Hitzky, J.M. Rojo, Nature 287, 28 (1980)CrossRefGoogle Scholar
  20. 20.
    K. Chabrol, M. Gressier, N. Pebere, M.J. Menu, F. Martin, J.P. Bonino, C. Marichal, J. Brendle, J. Mater. Chem. 20, 9695 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Fujii, S. Hayashi, H. Kodama, Chem. Mater. 15, 1189 (2003)CrossRefGoogle Scholar
  22. 22.
    K. Fujii, S. Hayashi, Appl. Clay Sci. 29, 235 (2005)CrossRefGoogle Scholar
  23. 23.
    K. Fujii, S. Hayashi, H. Hashizume, S. Shimomura, K. Jimura, T. Fujita, N. Iyi, A. Yamagishi, H. Sato, T. Ando, Phys. Chem. Chem. Phys. 18, 19146 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Fujii, N. Iyi, R. Sasai, S. Hayashi, Chem. Mater. 20, 2994 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Fujii, N. Iyi, H. Hashizume, S. Shimomura, T. Ando, Chem. Mater. 21, 1179 (2009)CrossRefGoogle Scholar
  26. 26.
    K. Fujii, T. Kuroda, K. Sakoda, N. Iyi, J. Photochem. Photobiol. A 225, 125 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Fujii, J.P. Hill, H. Hashizume, S. Shimomura, K. Ariga, T. Ando, J. Mater. Sci. 52, 12156 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Turhan, P. Turhan, M. Degan, M. Alkan, H. Namli, O. Demirbas, Ind. Eng. Chem. Res. 47, 1883 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Takahashi, J. Umeda, K. Hayashi, W. Sakamoto, T. Yogo, J. Mater. Sci. 51, 3398 (2016)CrossRefGoogle Scholar
  30. 30.
    R.D. Shanon, Acta Crystallogr. A32, 751 (1976)CrossRefGoogle Scholar
  31. 31.
    H. Hashizume, S. Shimomura, H. Yamada, T. Fujita, H. Nakazawa, Powder Diffr. 11, 288 (1996)CrossRefGoogle Scholar
  32. 32.
    R.P. Teno’rio, R.P.M. Engelsberg, J.O. Fossum, G.J. da Silva, Langmuir 26, 9703 (2010)CrossRefGoogle Scholar
  33. 33.
    V.C. Farmer, J.D. Russel, Clays Clay Miner. 15, 121 (1967)CrossRefGoogle Scholar
  34. 34.
    H. Takeshi, Y. Uno, Miner. Soc. Jpn. Spec. Pap. 98 (1971)Google Scholar
  35. 35.
    Y. Uno, H. Takeshi, J. Miner. Soc. Jpn. Spec Pap. 156 (1981)Google Scholar
  36. 36.
    The Japan Society for Analytical Chemistry, Kisobunsekikagakukoza 16 Sekigai⋅Raman (Kyoritsushuppan, Tokyo, 1968)Google Scholar
  37. 37.
    J.D. Russel, V.C. Farmer, B. Velde, Mineral. Mag. 37, 869 (1970)CrossRefGoogle Scholar
  38. 38.
    A.F. Schreiner, D.J. Hamm, Inorg. Chem. 12, 2037 (1973)CrossRefGoogle Scholar
  39. 39.
    F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edn. (Wiley, New York, 1980)Google Scholar
  40. 40.
    S.W. Bailey, Clay Sci. 5, 209 (1979)Google Scholar
  41. 41.
    M. Miyagawa, A. Shibusawa, K. Maeda, A. Tashiro, T. Sugai, H. Tanaka, RSC Adv. 7, 41896 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Miyagawa, M. Usui, Y. Imura, S. Kuwahara, T. Sugai, H. Tanaka, Chem. Commun. 54, 8454 (2018)CrossRefGoogle Scholar
  43. 43.
    T. Marcopoulos, M. Economou, Am. Miner. 66, 1020 (1981)Google Scholar
  44. 44.
    S.W. Bailey, Hydrous Phyllosilicates vol. 19, (Mineralogical Society of America, Washington, 1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations