Free Exciton Absorptions and Quasi-reversible Redox Actions in Polypyrrole–Polyaniline–Zinc Oxide Nanocomposites as Electron Transporting Layer for Organic Light Emitting Diode and Electrode Material for Supercapacitors

  • R. Kandulna
  • R. B. ChoudharyEmail author
  • R. Singh


The ternary nanocomposite comprised of PPY–PANI (polypyrrole–polyaniline) copolymer and zinc oxide (ZnO), synthesized by implying chemical oxidative polymerization of pyrrole monomer in presence of ammonium persulfate as oxidant with varying ZnO concentrations. The shifting of bands and their corresponding change in nano-strain of as-prepared PPY–PANI–ZnO nanocomposite of varying concentration was confirmed by the Fourier transform inferred spectroscopy (FTIR). The surface morphological images of PPY–PANI–ZnO nanocomposites revealed the nano-flake like structure attributed to the embodiment of ZnO and increase in agglomeration was detected with the increasing concentration of ZnO. The optimized reduction in band gap up to ~ 1.02 eV and red-shift of absorption edge of ZnO in visible region side was detected for 10% PPY–PANI–ZnO nanocomposite. The relatively slow decay component and higher non radiative electron–hole recombination rate showed the better electron transport properties with chromaticity in ideal blue region for 10% PPY–PANI–ZnO nanocomposite. The higher current density ~ 7.95 A/cm2, high dielectric constant ~ 1960 at 373 K, high reduction potential ~ + 0.687 V with high specific capacitance (~ 436.14 F/g) at 10 mV s−1 and better thermal firmness was observed for 10% PPY–PANI–ZnO nanocomposite. The relatively high discharge time ~ 2600 s and high power density with meagre loss in energy density at high current density was also observed for 10% PPY–PANI–ZnO nanocomposite. These robust properties confirmed that the proposed 10% PPY–PANI–ZnO nanocomposite could be employed as electron transporting material for OLEDs as well as for high performance and efficient supercapacitors.


PPY–PANI–ZnO nanocomposites Chemical oxidative polymerization PL Electron transport layer Electrochemical performance 



Authors show their deep thanks to IIT(ISM) Dhanbad for providing fellowship. Authors also acknowledge DST, New Delhi for using lifetime spectrometer (Project No. SR/FST/PSI-004/2013).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    U. Male, S. Uppugalla, P. Srinivasan, J. Solid State Electrochem. 19, 3381–3388 (2015)CrossRefGoogle Scholar
  2. 2.
    S.H. Mir, L.A. Nagahara, T. Thundat, P.M. Tabari, H. Furukawa, A. Khosla, J. Electrochem. Soc. 165, 3137–3156 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Bizzarri, E. Spuling, D.M. Knoll, D. Volz, S. Bräse, Coord. Chem. Rev. 373, 49–82 (2018)CrossRefGoogle Scholar
  4. 4.
    M.C. Gather, A. Kohnen, K. Meerholz, Adv. Mater. 23, 233–248 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 23, 926–952 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Okamura, T. Maeda, S. Yagi, Bull. Chem. Soc. Jpn 91, 1419–1428 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Zou, H. Wu, C.S. Lam, C. Wang, J. Zhu, C. Zhong, S. Hu, C.L. Ho, G.J. Zhou, H. Wu, W.C.H. Choy, J. Peng, Y. Cao, W.Y. Wong, Adv. Mater. 23, 2976–2980 (2011)CrossRefGoogle Scholar
  8. 8.
    Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 23, 664–668 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater. 23, 3989–3994 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Yang, F.-I. Wu, H. Haverinen, J. Li, C.-H. Cheng, G.E. Jabbour, Appl. Phys. Lett. 98, 033302–003305 (2011)CrossRefGoogle Scholar
  11. 11.
    H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Light: Sci. Appl. 7, 17168 (2018)CrossRefGoogle Scholar
  12. 12.
    E.Z. Colman, J. Beilstein, Org. Chem. 14, 1944–1945 (2018)Google Scholar
  13. 13.
    J.H. Kim, C. Choi, J.M. Lee, M.J. Andrade, R.H. Baughman, S.J. Kim, Sci. Rep. 8, 13309–13316 (2018)CrossRefGoogle Scholar
  14. 14.
    A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, J. Phys. Chem. C 114, 658–663 (2010)CrossRefGoogle Scholar
  15. 15.
    B.L. Su, Q. Zhang, D. Bonifazi, J. Li, ChemSusChem 4, 1327–1331 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, J. Energy Storage 17, 224–227 (2018)CrossRefGoogle Scholar
  17. 17.
    J.R. McDonough, J.W. Choi, Y. Yang, F.L. Mantia, Y. Zhang, Y. Cui, Appl. Phys. Lett. 95, 243109–243111 (2009)CrossRefGoogle Scholar
  18. 18.
    Y.S. Yun, C. Im, H.H. Park, I. Hwang, Y. Tak, H.J. Jin, J. Power Sources 234, 285–291 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Hou, L. Chen, L. Zhang, J. Kang, T. Fujita, J. Jiang, M. Chen, J. Power Sources 225, 304–310 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Lu, G.M. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690–1696 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Brownson, C. Banks, Analyst. 135, 2768–2778 (2010)CrossRefGoogle Scholar
  22. 22.
    K. Ariga, S. Watanabe, T. Mori, J. Takeya, NPG Asia Mater. 10, 90–106 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Ali, M.Z. Butt, S. Naseem, Radiat. Eff. Defect Solids 168, 1–9 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Resta, L. Calcagnile, G. Quarta, L. Maruccio, A. Cola, I. Farella, G. Giancane, L. Valli, Nucl. Instr. Meth. Phys. Res. B 312, 42–47 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Beidaghi, Y. Gogotsi, Energy Environ. Sci. 7, 867–884 (2014)CrossRefGoogle Scholar
  26. 26.
    T.-H. Le, Y. Kim, H. Yoon, Polymers 9, 150–181 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Li, H. Xie, Y. Li, J. Liu, Z. Li, J. Power Sources 196, 10775–10781 (2011)CrossRefGoogle Scholar
  28. 28.
    L.C. Ji, L. Huang, Y. Liu, Y.Q. Xie, F. Liu, A.Y. Liu, W.Z. Shi, Thin Solid Films 519, 3789–3791 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Murugadoss, J. Mater. Sci. Technol. 28, 587–593 (2012)CrossRefGoogle Scholar
  30. 30.
    R. Kandulna, R.B. Choudhary, Optik 144, 40–48 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Samzadeh-Kermani, M. Mirzaee, M. Ghaffari-Moghaddam, Adv. Biol. Chem. 6, 1–11 (2016)CrossRefGoogle Scholar
  32. 32.
    M.A. Chougule, G.D. Khuspe, S. Sen, V.B. Patil, Appl. Nanosci. 3, 423–429 (2013)CrossRefGoogle Scholar
  33. 33.
    T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja, S.C. Raghavendra, M. Revanasiddappa, A. Prasad, D.S. Hu, Int. J. Adv. Res. Eng. Technol. 4, 278–287 (2013)Google Scholar
  34. 34.
    A.A. Khan, M. Khalid, J. Appl. Polym. Sci. 117, 1601–1607 (2010)Google Scholar
  35. 35.
    J. Wilson, S. Radhakrishnan, C. Sumathi, V. Dharuman, Sens. Actuators A 171, 216–222 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Tai, Y. Juang, G. Xie, J. Yu, X. Chen, Z. Ying, Sens. Actuators B 129, 319–326 (2008)CrossRefGoogle Scholar
  37. 37.
    M.A. Chougule, S. Sen, V.B. Patil, Synth. Met. 162, 1598–1603 (2012)CrossRefGoogle Scholar
  38. 38.
    H. Shiigi, M. Kishimoto, H. Yakabe, B. Deore, T. Nagaoka, Anal. Sci. 18, 41–44 (2002)CrossRefGoogle Scholar
  39. 39.
    Y. Matsumoto, K. Honma, J. Chem. Phys. 127, 184310–184318 (2007)CrossRefGoogle Scholar
  40. 40.
    K.B.G. Alves, J.F. Felix, E.F.D. Melo, C.G.D. Santos, C.A.S. Andrade, C.P.D. Melo, J. Appl. Polym. Sci. 125, 141–147 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Kandulna, R.B. Choudhary, Polym. Bull. 75, 3089–3107 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Ge, X. Zeng, X. Tao, X. Li, Z. Shen, J. Yun, J. Chen, J. Appl. Polym. Sci. 118, 1507–1512 (2010)Google Scholar
  43. 43.
    R. Singh, R.B. Choudhary, R. Kandulna, J. Mol. Struct. 1156, 633–644 (2018)CrossRefGoogle Scholar
  44. 44.
    M.D.A. Khan, A. Akhtar, S.A. Nabi, New J. Chem. 39, 3728–3735 (2015)CrossRefGoogle Scholar
  45. 45.
    J.B. Veluru, S. Vempati, S. Ramakrishna, Mater. Sci. Appl. 4, 1–10 (2013)Google Scholar
  46. 46.
    D.M. Sabara, J.S. Dunne, A.Q.H. Pedro, J. Trifunovic, B.I.O. Idiatu, O. Kotlicic, A. Serrano, K. Istvan, Biotechnol. Food Sci. 75, 39–49 (2011)Google Scholar
  47. 47.
    X. Sun, C. Bruckner, M.P. Nieh, Y. Lei, J. Mater. Chem. A 2, 14613–14621 (2014)CrossRefGoogle Scholar
  48. 48.
    P. Chand, A. Gaur, A. Kumar, J. Alloys Compd. 539, 174–178 (2012)CrossRefGoogle Scholar
  49. 49.
    D.C. Reyolds, D.C. Look, B. Jogai, H. Morkoc, Solid State Commun. 101, 643–646 (1997)CrossRefGoogle Scholar
  50. 50.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983–7990 (1996)CrossRefGoogle Scholar
  51. 51.
    D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601–1603 (2004)CrossRefGoogle Scholar
  52. 52.
    R. Kandulna, R.B. Choudhary, R. Singh, B. Purty, J. Mater. Sci. 29, 5893–5907 (2018)Google Scholar
  53. 53.
    K.K. Nanda, S. Swain, B. Satpati, L. Besra, Y.S. Chaudhary, RSC Adv. 4, 10928–10934 (2014)CrossRefGoogle Scholar
  54. 54.
    D.K. Padhi, K. Parida, J. Mater. Chem. A 2, 10300–10312 (2014)CrossRefGoogle Scholar
  55. 55.
    Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, J. Phys. Chem. C 115, 1786–1792 (2011)CrossRefGoogle Scholar
  56. 56.
    L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, V.I. Klimov, J. Am. Chem. Soc. 133, 1176–1179 (2011)CrossRefGoogle Scholar
  57. 57.
    T.W. Murphy, J. Appl. Phys. 111, 104909–104914 (2012)CrossRefGoogle Scholar
  58. 58.
    Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, H. Liu, Electrochim. Acta 88, 519–525 (2013)CrossRefGoogle Scholar
  59. 59.
    V.T. Bhugul, G.N. Chaudhari, Int. J. Adv. Res. 2, 159–164 (2013)Google Scholar
  60. 60.
    W. Xue, K. Fang, H. Qiu, J. Li, W. Mao, Synth. Met. 156, 506–509 (2006)CrossRefGoogle Scholar
  61. 61.
    A. Batool, F. Kanwal, M. Imran, T. Jamil, S.A. Siddiqi, Synth. Met. 161, 2753–2758 (2012)CrossRefGoogle Scholar
  62. 62.
    P. Maji, R.B. Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)CrossRefGoogle Scholar
  63. 63.
    L.M. Levinson, H.R. Philipp, J. Appl. Phys. 47, 1117–1122 (1976)CrossRefGoogle Scholar
  64. 64.
    P. Maji, R.B. Choudhary, P.P. Pande, Bull. Mater. Sci. 38, 417–424 (2015)CrossRefGoogle Scholar
  65. 65.
    S.B. Aziz, Bull. Mater. Sci. 38, 1597–1602 (2015)CrossRefGoogle Scholar
  66. 66.
    M. Majhi, R.B. Choudhary, P. Maji, Polym. Composite 38, 108–117 (2016)CrossRefGoogle Scholar
  67. 67.
    K.S. Hemalatha, G. Sriprakash, M.V.N.A. Prasad, R. Damle, K. Rukmani, J. Appl. Phys. 118, 154103–154114 (2015)CrossRefGoogle Scholar
  68. 68.
    W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, RSC Adv. 2, 10268–10274 (2012)CrossRefGoogle Scholar
  69. 69.
    R.S. Andre, A. Pavinatto, L.A. Mercante, E.C. Paris, L.H.C. Mattoso, D.S. Correa, RSC Adv. 5, 73875–73881 (2015)CrossRefGoogle Scholar
  70. 70.
    D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources 196, 5990–5996 (2011)CrossRefGoogle Scholar
  71. 71.
    R. Oraon, A.D. Adhikari, S.K. Tiwari, T.S. Sahu, G.C. Nayak, Appl. Clay Sci. 118, 231–238 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Vellakkat, A. Kamath, S. Raghu, S. Chapi, D. Hundekal, Ind. Eng. Chem. Res. 53, 16873–16882 (2014)CrossRefGoogle Scholar
  73. 73.
    H. Du, Y. Xie, C. Xia, W. Wang, F. Tian, New J. Chem. 38, 1284–1293 (2014)CrossRefGoogle Scholar
  74. 74.
    S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Electrochim. Acta 120, 408–415 (2014)CrossRefGoogle Scholar
  75. 75.
    G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, W. Chen, Sci. Rep. 7, 43676–43684 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanostructured Composite Materials Laboratory, Department of Applied PhysicsIndian Institute of Technology (IIT-ISM)DhanbadIndia

Personalised recommendations