Advertisement

Ferrite Nanoparticles: Synthesis, Characterization, and Catalytic Activity Evaluation for Solid Rocket Propulsion Systems

  • Sherif ElbasuneyEmail author
  • Mohamed Gobara
  • M. Yehia
Article
  • 65 Downloads

Abstract

Ammonium perchlorate (APC) is the most common oxidizer in use for solid rocket propulsion systems. However its initial thermal decomposition is an endothermic process that requires 102.5 J/g. This behavior involves high activation energy and could render high burning rate regime. This study reports on the sustainable fabrication of barium ferrite nanoparticles as a novel catalyzing agent for APC oxidizer. Colloidal BaFe12O19 nanoparticles with consistent product quality were fabricated using hydrothermal processing. TEM micrographs demonstrated mono-dispersed particles of 10 nm particle size. XRD diffractogram demonstrated highly crystalline material. The synthesized colloidal BaFe12O19 particles were effectively coated with APC particles via co-precipitation using fast-crash solvent–antisolvent technique. The impact of ferrite particles on APC thermal behavior has been investigated using DSC and TGA techniques. APC demonstrated an initial endothermic decomposition stage at 142 °C with subsequent two exothermic decomposition stages at 297.8 and 452.8 °C respectively. At 1 wt%, barium ferrite offered decrease in initial endothermic decomposition stage by 42.5%. The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 19.7%. These novel features can inherit ferrite particles unique catalyzing ability for advanced highly energetic systems.

Keywords

Ammonium perchlorate Catalyst Thermal behavior Energetic systems Catalyzed propellants 

Notes

Acknowledgements

This work has been conducted at nanotechnology research center in collaboration with department of chemical engineering, School of chemical engineering, Military Technical College, Cairo, Egypt.

References

  1. 1.
    S. Jain, M. Mehilal, S. Nandagopal, P. Singh, K. Radhakrishnan, B. Bhattacharya, Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def. Sci. J. 59(3), 294 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Kumari, S. Mehilal, M. Jain, B. Jain, Bhattacharya, Nano-ammonium perchlorate: preparation, characterization, and evaluation in composite propellant formulation. J. Energ. Mater. 31(3), 192–202 (2013)CrossRefGoogle Scholar
  3. 3.
    G.P. Li, L.H. Shen, B.M. Zheng, M. Xia, Y.J. Luo, The preparation and properties of AP-based nano-limit growth energetic materials, in Advanced Materials Research (Trans Tech Publ, Zurich, 2014), vol. 924, pp. 105–109Google Scholar
  4. 4.
    M. Zou, X. Jiang, L. Lu, X. Wang, Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J. Hazard. Mater. 225, 124–130 (2012)CrossRefGoogle Scholar
  5. 5.
    J.A. Conkling, C. Mocella, Chemistry of pyrotechnics: basic principles and theory (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  6. 6.
    G.P. Sutton, O. Biblarz, Rocket propulsion elements (2001)Google Scholar
  7. 7.
    N. Kubota, Propellants and explosives: thermochemical aspects of combustion (Wiley, Hoboken, 2015)Google Scholar
  8. 8.
    R.A. Chandru, S. Patra, C. Oommen, N. Munichandraiah, B. Raghunandan, Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. J. Mater. Chem. 22(14), 6536–6538 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Chaturvedi, P.N. Dave, Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J. Exp. Nanosci. 7(2), 205–231 (2012)CrossRefGoogle Scholar
  10. 10.
    M.J. Turner, Rocket and spacecraft propulsion: principles, practice and new developments (Springer, New York, 2008)Google Scholar
  11. 11.
    N.R. Council, Advanced energetic materials (National Academies Press, Washington, DC, 2004)Google Scholar
  12. 12.
    S.G. Hosseini, R. Abazari, A. Gavi, Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 37, 72–79 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Wang, R. Shen, Y. Ye, Y. Hu, An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips. Nanotechnology 23(43), 435701 (2012)CrossRefGoogle Scholar
  14. 14.
    P.R. Patil, V.E.N. Krishnamurthy, S.S. Joshi, Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos. Pyrotech. 31(6), 442–446 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Li et al., Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54, 124–132 (2013)CrossRefGoogle Scholar
  16. 16.
    S.R. Chakravarthy, E.W. Price, R.K. Sigman, Mechanism of burning rate enhancement of composite solid propellants by ferric oxide. J. Propuls. Power 13(4), 471–480 (1997)CrossRefGoogle Scholar
  17. 17.
    S.-M. Shen, S.-I. Chen, B.-H. Wu, The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim. Acta 223, 135–143 (1993)CrossRefGoogle Scholar
  18. 18.
    A. Nema, S. Jain, S. Sharma, S. Nema, S. Verma, Mechanistic aspect of thermal decomposition and burn rate of binder and oxidiser of AP/HTPB composite propellants comprising HYASIS-CAT. Int. J. Plastics Technol. 8, 344–354 (2004)Google Scholar
  19. 19.
    L. Liu, F. Li, L. Tan, L. Ming, Y. Yi, Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech. 29(1), 34–38 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Rastogi, G. Singh, R.R. Singh, Burning rate catalysts for composite solid propellants Combust. Flame. 30, 117–124 (1977)CrossRefGoogle Scholar
  21. 21.
    W. Pang et al, Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust. Sci. Technol. 188(3), 315–328 (2016)CrossRefGoogle Scholar
  22. 22.
    P.W.M. Jacobs, H. Whitehead, Decomposition and combustion of ammonium perchlorate. Chem. Rev. 69(4), 551–590 (1969)CrossRefGoogle Scholar
  23. 23.
    T. Daou et al, Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18(18), 4399–4404 (2006)CrossRefGoogle Scholar
  24. 24.
    X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Cabanas, M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11(5), 1408–1416 (2001)CrossRefGoogle Scholar
  26. 26.
    J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Li, Engineering Nanoparticles in Near-critical and Supercritical Water, Ph.D. (University of Nottingham, Nottingham, 2008)Google Scholar
  28. 28.
    M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43(7), 2085–2103 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2001)Google Scholar
  30. 30.
    P. Savage, S. Gopalan, T. Mizan, C. Martino, Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41(7), 1723–1778 (1995)CrossRefGoogle Scholar
  31. 31.
    K.S. Morley et al, Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)CrossRefGoogle Scholar
  32. 32.
    J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)CrossRefGoogle Scholar
  33. 33.
    S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Elbasuney, Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC Trends Anal. Chem. 102, 272–279 (2018)CrossRefGoogle Scholar
  39. 39.
    T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)CrossRefGoogle Scholar
  40. 40.
    T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992)CrossRefGoogle Scholar
  41. 41.
    S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018)CrossRefGoogle Scholar
  42. 42.
    S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, “Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(5), 1718–1727 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Elbasuney et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(6), 2231–2240 (2018)CrossRefGoogle Scholar
  44. 44.
    S. Elbasuney, M. Gaber Zaky, M. Radwan, S.F. Mostafa, Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)CrossRefGoogle Scholar
  45. 45.
    S. Elbasuney, H.E. Mostafa, Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology 22, 82–88 (2015)CrossRefGoogle Scholar
  46. 46.
    S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)CrossRefGoogle Scholar
  47. 47.
    T. Tillotson, L. Hrubesh, R. Simpson, R. Lee, R. Swansiger, L. Simpson, Sol–gel processing of energetic materials. J. Non-cryst. Solids 225, 358–363 (1998)CrossRefGoogle Scholar
  48. 48.
    M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J. Nanostruct. Chem. 3(1), 47 (2013)CrossRefGoogle Scholar
  49. 49.
    V. Boldyrev, Thermal decomposition of ammonium perchlorate. Thermochim. Acta 443(1), 1–36 (2006)CrossRefGoogle Scholar
  50. 50.
    L. Li, Y. Zhou, Z. Li, Y. Ma, C. Pei, One step fabrication of Mn3O4/carbonated bacterial cellulose with excellent catalytic performance upon ammonium perchlorate decomposition. Mater. Res. Bull. 60, 802–807 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Head of Nanotechnology Research Center, School of Chemical EngineeringMilitary Technical CollegeCairoEgypt
  2. 2.School of Chemical EngineeringMilitary Technical CollegeCairoEgypt

Personalised recommendations