Facile Synthesis of Ag/ZnO Photocatalysts on the Degradation of Diuron Herbicide Under Simulated Solar Light and the Investigation of Its Antibacterial Activity for Waste-Water Treatment

  • Mohamed Ali SaidaniEmail author
  • Anis Fkiri
  • Leila-Samia Smiri


Nanocrystalline Ag/ZnO powders have been successfully prepared by a modified polyol process using triethylene-glycol (TEG) as solvent, reducing and stabilizing agent. The synthesis procedure has been conducted without any post-synthesis thermal treatment. The structural and optical properties have been characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption study, inductively coupled plasma optical emission spectroscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of Ag/ZnO materials has been studied by analyzing the degradation of an herbicide, diuron, under solar light. Ag/ZnO photocatalysts with optimized x = 0.7% Ag content showed 14 times higher rate of degradation than that of unmodified ZnO. We attribute these observations to the addition of silver nanoparticles allowing interfacial oxide-to-metal electron transfer within the hybrid Ag/ZnO photocatalyst. The inhibitory and bactericidal activities of samples have been tested against Gram-negative bacteria; Escherichia coli, Salmonella typhimurium and gram-positive bacteria; Staphylococcus aureus, Enterococcus faecium and Candida albicans. The results showed that the Ag/ZnO can be used as photocatalysts and antibacterial agents for potential practical applications in the wastewater treatment.

Graphical Abstract

Schematic of the proposed photocatalytic and bactericidal mechanism of Ag/ZnO nanostructure.


ZnO Ag Nanoparticles Photocatalysis Antibacterial Wastewater treatment 



Mohamed Ali Saidani gratefully acknowledges the support of the Ministry of Higher Education and Scientific Research of Tunisia. The French National Research Agency is gratefully acknowledged for partial funding of this work, University of Strasbourg, ICPEES are thanked for technical support.


  1. 1.
    G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004)CrossRefGoogle Scholar
  2. 2.
    P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)CrossRefGoogle Scholar
  3. 3.
    A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies. Desalination 221, 47–69 (2008)CrossRefGoogle Scholar
  4. 4.
    B. Roig, C. Gonzalez, O. Thomas, Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim Acta A 59, 303–307 (2003)CrossRefGoogle Scholar
  5. 5.
    K. Vignesh, A. Suganthi, M. Rajarajan, S.A. Sara, Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation. Powder Technol. 224, 331–337 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Giannakis, M. Jovic, N. Gasilova, M. Pastor Gelabert, S. Schindelholz, J.-M. Furbringer, H. Girault, C. Pulgarin, Iohexol degradation in wastewater and urine by UV-based advanced oxidation processes (AOPs): process modeling and by-products identification. J. Environ. Manag. 195, 174–185 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284, 582–598 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J. Hazard. Mater. 172, 1303–1310 (2009)CrossRefGoogle Scholar
  9. 9.
    L.-H. Li, J.-C. Deng, H.-R. Deng, Z.-L. Liu, X.-L. Li, Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 160, 378–382 (2010)CrossRefGoogle Scholar
  10. 10.
    M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B 63, 305–312 (2006)CrossRefGoogle Scholar
  11. 11.
    C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A 304, 55–61 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem. Photobiol. A 162, 317–322 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)CrossRefGoogle Scholar
  14. 14.
    N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56, 101–107 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy. Compd. 577, 717–727 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Pearton, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1057 (2010)CrossRefGoogle Scholar
  18. 18.
    C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)CrossRefGoogle Scholar
  19. 19.
    R.S. Patil, M.R. Kokate, D.V. Shinde, S.S. Kolekar, S.H. Han, Synthesis and enhancement of photocatalytic activities of ZnO by silver nanoparticles. Spectrochim. Acta A 122, 113–117 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J. Phys. Chem. Lett. 2, 2840–2845 (2011)CrossRefGoogle Scholar
  21. 21.
    Q. Deng, X. Duan, D.H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 4, 6030–6037 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, X. Gao, L. Zhi, X. Liu, W. Jiang, Y. Sun, J. Yang, The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J. Inorg. Biochem. 130, 74–83 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Chai, X. Wang, S. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram. Int. 40, 429–435 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties. J. Alloy. Compd. 524, 13–21 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Chauhan, A. Kumar, R.P. Chaudhary, Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method. J. Sol-Gel. Sci. Technol. 63, 546–553 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Tian, W. Li, K. Pan, Q. Zhang, G. Tian, W. Zhou, H. Fu, One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance. J. Solid State Chem. 183, 2720–2725 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Zhu, D. Liu, Y. Lai, M. Meng, Ambient ultrasonic-assisted synthesis, stepwise growth mechanisms, and photocatalytic activity of flower-like nanostructured ZnO and Ag/ZnO. J. Nanoparticle Res. 16(3), 2305 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Alammar, A.-V. Mudring, Facile preparation of Ag/ZnO nanoparticles via photoreduction. J. Mater. Sci. 44, 3218–3222 (2009)CrossRefGoogle Scholar
  29. 29.
    S.-M. Lam, J.-A. Quek, J.-C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol. A 353, 171–184 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Malato, J. Caceres, A.R. Fernandez-Alba, L. Piedra, M.D. Hernando, A. Aguera, J. Vial, Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ. Sci. Technol. 37, 2516–2524 (2003)CrossRefGoogle Scholar
  31. 31.
    E. Pramauro, M. Vincenti, V. Augugliaro, L. Palmisano, Photocatalytic degradation of monuron in aqueous titanium dioxide dispersions. Environ. Sci. Technol. 27, 1790–1795 (1993)CrossRefGoogle Scholar
  32. 32.
    J. Jirkovský, V. Faure, P. Boule, Photolysis of diuron. Pestic. Sci. 50, 42–52 (1997)CrossRefGoogle Scholar
  33. 33.
    P. Mazellier, B. Sulzberger, Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environ. Sci. Technol. 35, 3314–3320 (2001)CrossRefGoogle Scholar
  34. 34.
    E. Vulliet, C. Emmelin, J.-M. Chovelon, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl. Catal. B 38, 127–137 (2002)CrossRefGoogle Scholar
  35. 35.
    L. Amir Tahmasseb, S. Nélieu, L. Kerhoas, J. Einhorn, Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways. Sci. Total Environ. 291, 33–44 (2002)CrossRefGoogle Scholar
  36. 36.
    H. Katsumata, M. Sada, Y. Nakaoka, S. Kaneco, T. Suzuki, K. Ohta, Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J. Hazard. Mater. 171, 1081–1087 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Carrier, C. Guillard, M. Besson, C. Bordes, H. Chermette, Photocatalytic degradation of diuron: experimental analyses and simulation of HO degrees radical attacks by density functional theory calculations. J. Phys. Chem. A 113, 6365–6374 (2009)CrossRefGoogle Scholar
  38. 38.
    G. Foura, A. Soualah, D. Robert, Effect of W doping level on TiO2 on the photocatalytic degradation of diuron. Water Sci. Technol. 75, 20–27 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Mezni, N.B. Saber, M.M. Ibrahim, M. El-Kemary, A. Aldalbahi, P. Feng, L. Samia, T. Smiri, Altalhi, Facile synthesis of highly thermally stable TiO2 photocatalysts. New J. Chem. 41, 5021–5027 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Li, X. Zhang, W. Zhang, L. Wang, X. Chen, Y. Gao, Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids Surf. A 457, 134–141 (2014)CrossRefGoogle Scholar
  42. 42.
    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 20, 1602–1607 (2014)CrossRefGoogle Scholar
  43. 43.
    H.M. Rietveld, Line profiles of neutron powder diffraction peaks for structure refinement. J. Appl. Crystallogr. 22(1), 151–152 (1967)Google Scholar
  44. 44.
    H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, S.Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett. 88, 202108 (2006)CrossRefGoogle Scholar
  45. 45.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogonides. Acta Crystallogr. 32(5), 751–767 (1976)CrossRefGoogle Scholar
  46. 46.
    J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles, Phys. Rev. B 72(7), 72 (2005)CrossRefGoogle Scholar
  47. 47.
    H. Liang, J.M. Raitano, G. He, A.J. Akey, I.P. Herman, L. Zhang, S.-W. Chan, Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 47, 299–307 (2011)CrossRefGoogle Scholar
  48. 48.
    T.H. Benjamin, Y. Wiley, Sun, Y. Xia, Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4, 1733–1739 (2004)CrossRefGoogle Scholar
  49. 49.
    S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, Structural and optical properties of silver-doped zinc oxide sputtered films. Surf. Coat. Technol. 193, 340–344 (2005)CrossRefGoogle Scholar
  50. 50.
    H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 221, 565–573 (2018)CrossRefGoogle Scholar
  51. 51.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York, 1996), pp. 441–455CrossRefGoogle Scholar
  52. 52.
    M.E. Madani, C. Guillard, N. Pérol, J.M. Chovelon, M.E. Azzouzi, A. Zrineh, J.M. Herrmann, Photocatalytic degradation of diuron in aqueous solution in presence of two industrial titania catalysts, either as suspended powders or deposited on flexible industrial photoresistant papers. Appl. Catal. B 65, 70–76 (2006)CrossRefGoogle Scholar
  53. 53.
    D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán, G.L. Puma, Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl. Catal. B 178, 74–81 (2015)CrossRefGoogle Scholar
  54. 54.
    Z. Zhang, H. Liu, H. Zhang, H. Dong, X. Liu, H. Jia, B. Xu, Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Superlattices Microstruct. 65, 134–145 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Misra, P. Kapur, M.K. Nayak, M. Singla, Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem. 38, 4197–4203 (2014)CrossRefGoogle Scholar
  56. 56.
    A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Fkiri, M.R. Santacruz, A. Mezni, L.S. Smiri, V. Keller, N. Keller, One-pot synthesis of lightly doped Zn1−xCuxO and Au–Zn1−xCuxO with solar light photocatalytic activity in liquid phase. Environ. Sci. Pollut. Res. Int. 24, 15622–15633 (2017)CrossRefGoogle Scholar
  58. 58.
    N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane, K.M. Garadkar, Fabrication of M@CuxO/ZnO (M = Ag, Au) heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 56, 14489–14501 (2017)CrossRefGoogle Scholar
  59. 59.
    S. Kaviya, E. Prasad, Biogenic synthesis of ZnO–Ag nano custard apples for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv. 5, 17179–17185 (2015)CrossRefGoogle Scholar
  60. 60.
    Q. Zhu, X. Hu, M.S. Stanislaus, N. Zhang, R. Xiao, N. Liu, Y. Yang, A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite film for water purification and antibacterial application under solar light irradiation. Sci. Total Environ. 577, 236–244 (2017)CrossRefGoogle Scholar
  61. 61.
    D. de la Cruz, J.C. Arevalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguezabal, TiO2 doped with Sm3+ by sol-gel: synthesis, characterization and photocatalytic activity of diuron under solar light. Catal. Today 166, 152–158 (2011)CrossRefGoogle Scholar
  62. 62.
    M.E. Levison, Pharmacodynamics of antimicrobial drugs. Infect Dis. Clin. N. Am. 18, 451–465, vii (2004)CrossRefGoogle Scholar
  63. 63.
    J.-H. Sim, N.S. Jamaludin, C.-H. Khoo, Y.-K. Cheah, S.N.B.A. Halim, H.-L. Seng, E.R.T. Tiekink, In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3PAu [S2CN (iPr)CH2CH2OH] for R=Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bull. 47, 225–236 (2014)CrossRefGoogle Scholar
  64. 64.
    W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19, 445711 (2008)CrossRefGoogle Scholar
  65. 65.
    P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol. 219, 158–164 (2012)CrossRefGoogle Scholar
  66. 66.
    G. Gonzalez-Aspajo, H. Belkhelfa, L. Haddioui-Hbabi, G. Bourdy, E. Deharo, Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J. Ethnopharmacol. 171, 330–334 (2015)CrossRefGoogle Scholar
  67. 67.
    S.T. Omara, MIC and MBC of honey and gold nanoparticles against methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) coagulase-positive S. aureus isolated from contagious bovine clinical mastitis. J. Genet. Eng. Biotechnol. 15, 219–230 (2017)CrossRefGoogle Scholar
  68. 68.
    K. Iwata, Toxins produced by Candida albicans. Contrib Microbiol Immunol. 4, 77–85 (1977)Google Scholar
  69. 69.
    M.J. McCullough, B.C. Ross, P.C. Reade, Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg. 25, 136–144 (1996)CrossRefGoogle Scholar
  70. 70.
    M. Fang, J.-H. Chen, X.-L. Xu, P.-H. Yang, H.F. Hildebrand, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 27, 513–517 (2006)CrossRefGoogle Scholar
  71. 71.
    Y. Qin, C. Zhu, J. Chen, Y. Chen, C. Zhang, The absorption and release of silver and zinc ions by chitosan fibers. J. Appl. Polym. Sci. 101, 766–771 (2006)CrossRefGoogle Scholar
  72. 72.
    V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009)CrossRefGoogle Scholar
  73. 73.
    X. Wang, Y. Du, J. Yang, Y. Tang, J. Luo, Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J. Biomed. Mater. Res. A 84, 384–390 (2008)CrossRefGoogle Scholar
  74. 74.
    K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36, 497–506 (2010)CrossRefGoogle Scholar
  75. 75.
    V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015)CrossRefGoogle Scholar
  76. 76.
    J.M. Wu, W.T. Kao, Heterojunction nanowires of AgxZn1−xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119, 1433–1441 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Recherche Synthèse et Structure de Nanomatériaux UR11 ES30, Faculté des Sciences de BizerteUniversité de CarthageJarzouna, BizerteTunisia

Personalised recommendations