Advertisement

The Effect of Graphene Nanoplatelets on the Wear Properties of High-Frequency Induction Sintered Alumina Nanocomposites

  • Ayberk Altintaş
  • Uğur ÇavdarEmail author
  • İ. Murat Kuşoğlu
Article
  • 52 Downloads

Abstract

Alumina nanoparticles mixed with up to 1wt% graphene nanoplatelets (GNPs) were mixed by high-speed ball milling for 2 h at 350 rpm and sintered in a graphite die at 1650 °C for 20 min in an ultra-high-frequency induction heated system (UHFIHS) under uniaxial load in a vacuum chamber. The effect of different GNPs ratios on the microstructure, hardness and wear rate of alumina nanocomposites was examined. The results showed that the mechanical properties of Al2O3–GNPs nanocomposites gradually improved with GNP additions of 0.1 wt% to 0.6 wt%.

Keywords

Alumina Graphene Sintering Induction Nanocomposite 

Notes

Acknowledgements

The research in this paper was supported by The Scientific and Technological Research Council of Turkey (Project Number: 214M414).

References

  1. 1.
    K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology, Reprint Edition, 1987Google Scholar
  2. 2.
    A. Mnyusiwalla, A.S. Daar, P.A. Singer. Nanotechnology. (2003).  https://doi.org/10.1088/0957-4484/14/3/201 Google Scholar
  3. 3.
    X. Xin-Bo, L. Bai-Chao, H. Jian-Feng, Z. Xie-Rong, J. Inorg. Organomet. Polym. (2011).  https://doi.org/10.1007/s10904-011-9482-x Google Scholar
  4. 4.
    S. Ananthakumar, S.M. Babu, J. Inorg. Organomet. Polym. (2018).  https://doi.org/10.1007/s10904-018-1020-7 Google Scholar
  5. 5.
    F.K. Fotooh, T.A. Baghemiyani, J. Inorg. Organomet. Polym. (2018).  https://doi.org/10.1007/s10904-018-1018-1 Google Scholar
  6. 6.
    M.N. Avettand-Fènoël, T. Nagaoka, H. Fujii, R. Taillarda, J. Manuf. Process. (2018).  https://doi.org/10.1016/j.jmapro.2017.11.012 Google Scholar
  7. 7.
    Y. Pachaury, P. Tandon, An overview of electric discharge machining of ceramics and ceramic based composites. J. Manuf. Process. 25, 369–390 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Zarei, S. Saedi, F. Seidi, J. Inorg. Organomet. Polym. (2018).  https://doi.org/10.1007/s10904-018-0948-y Google Scholar
  9. 9.
    R.X. Shi, J. Li, Y.S. Yin, H.Y. Ge, Mater. Sci. Eng. A (2011).  https://doi.org/10.1016/j.msea.2011.03.054 Google Scholar
  10. 10.
    M. Hidouri, S.V. Dorozhkin, N. Albeladi, J. Inorg. Organomet. Polym Mater. (2018).  https://doi.org/10.1007/s10904-018-0969-6 Google Scholar
  11. 11.
    B.J. Abbasi, M. Zakeri, S.A. Tayebifard, Ceram. Int. (2014).  https://doi.org/10.1016/j.ceramint.2014.01.141 Google Scholar
  12. 12.
    W. Choi, J.W. Lee, Graphene Synthesis, and Applications, 10 (Taylor & Francis Group, New York, 2012), pp. 84–94 ISBN: 1439861870, ISBN-13: 978-1439861875$4Google Scholar
  13. 13.
    C.L.C. Rodriguez, F. Kessler, N. Dubey, V. Rosa, G.J.M. Fechine, Surf. Coat. Technol. (2017).  https://doi.org/10.1016/j.surfcoat.2016.12.111 Google Scholar
  14. 14.
    D. Li, Z. Yang, D. Jia, X. Duan, P. He, J. Yu, Y. Zhou, Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2015.05.011 Google Scholar
  15. 15.
    R.M. German, Sintering Theory, and Practice (Willey, Pennsylvania, 1996), pp. 7–34Google Scholar
  16. 16.
    S.W. Kim, K.A.R. Khalil, J. Am. Ceram. Soc. (2006).  https://doi.org/10.1111/j.1551-2916.2005.00902.x Google Scholar
  17. 17.
    H.C. Kim, I.J. Shon, Z.A. Munir, Rapid sintering of ultra-fine WC-10 wt.% Co by high-frequency induction heating. J. Mater. Sci. (2005).  https://doi.org/10.1007/s10853-005-2422-9 Google Scholar
  18. 18.
    W. Kim, C.Y. Suh, K.M. Roh, J.W. Lim, S. Lee, S.L. Du, I.J. Shon, Ceram. Int. (2013).  https://doi.org/10.1016/j.ceramint.2012.06.068 Google Scholar
  19. 19.
    J.Y. Yoo, I.J. Shon, B.H. Cho, K.T. Lee, Ceram. Int. (2011).  https://doi.org/10.1016/j.ceramint.2011.04.002 Google Scholar
  20. 20.
    N.K. Babu, K. Kallip, M. Leparoux, K.A. AlOgab, X. Maeder, Y.A.R. Dasilva, Mater. Des. (2016).  https://doi.org/10.1016/j.matdes.2016.01.138 Google Scholar
  21. 21.
    Y.F. Chen, J.Q. Bi, C.L. Yin, G.L. You, Ceram. Int. (2014).  https://doi.org/10.1016/j.ceramint.2014.05.107 Google Scholar
  22. 22.
    B. Yazdani, H. Porwal, Y. Xia, H. Yan, M.J. Reece, Y. Zhu, Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2015.04.054 Google Scholar
  23. 23.
    H. Porwal, R. Saggar, P. Tatarko, S. Grasso, T. Sounders, I. Dlouhy, M.J. Reece, Ceram. Int. (2016).  https://doi.org/10.1016/j.ceramint.2016.01.160 Google Scholar
  24. 24.
    A. Centeno, V.G. Rocha, B. Alonso, A. Fernandez, C.F. Gutierrez-Gonzalez, R. Torrecillas, A. Zurutuza, J. Eur. Ceram. Soc. (2013).  https://doi.org/10.1016/j.jeurceramsoc.2013.07.007 Google Scholar
  25. 25.
    C.F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernandez, B. Alonso, V.G. Rocha, R. Torrecillas, A. Zurutuza, J.F. Bartolome, Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2015.02.061 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ayberk Altintaş
    • 1
  • Uğur Çavdar
    • 2
    Email author
  • İ. Murat Kuşoğlu
    • 3
  1. 1.Mechanical Engineering DepartmentManisa Celal Bayar UniversityManisaTurkey
  2. 2.Mechanical Engineering Department, Engineering Facultyİzmir Demokrasi UniversityIzmirTurkey
  3. 3.Department of CeramicTorbali Vocational School, Dokuz Eylul UniversityIzmirTurkey

Personalised recommendations