Advertisement

Modeling the Vibrational Properties of InSb Diamondoids and Nanocrystals Using Density Functional Theory

  • Bilal K. Al-Rawi
  • Asmiet Ramizy
Article
  • 10 Downloads

Abstract

Raman and infrared spectra were used to obtain the vibrational properties of an indium antimonide crystal. The density functional theory of the Perdew, Burke and Ernzerhof functions/3-21G and the functions’ basis of polarization were employed. This study investigates how the vibrational frequencies of InSb diamondoids change with size as compared to the experimental bulk. The results showed that the bond lengths in InSb diamondoids decreased as the number of atoms within increased. Many physical properties were studied, including energy gaps, tetrahedral angles, dihedral angles, atomic charges, and bond lengths. The high reduced mass mode (HRMM) and high force constant mode were found to be larger in octamantane than in diamondoids, at 211.09 cm−1 and 190.17 cm−1, respectively.

Keywords

InSb diamondoids Infrared spectroscopy Raman spectra PBE/3-21G DFT 

References

  1. 1.
    P.D. Olszak, C.M. Cirloganu, S. Webster et al., Phys. Rev. B (2010).  https://doi.org/10.1103/PhysRevB.82.235207 CrossRefGoogle Scholar
  2. 2.
    J. Abautret, J.P. Perez, A. Evirgen et al., J. Appl. Phys. (2013).  https://doi.org/10.1063/1.4804956 CrossRefGoogle Scholar
  3. 3.
    K.-M. Chang, J.-J. Luo, C.-D. Chiang, K.-C. Liu, Jpn. J. Appl. Phys. A 45(3), 1477–1482 (2006)CrossRefGoogle Scholar
  4. 4.
    V.L. Malevich, A. Krotkus, A. Biciunas, V. Pacebutas, J. Appl. Phys. (2008).  https://doi.org/10.1063/1.3040691 CrossRefGoogle Scholar
  5. 5.
    L. Landt, K. Klunder, J.E. Dahl, R.M.K. Carlson, T. Moller, C. Bostedt, Phys. Rev. Lett. (2009).  https://doi.org/10.1103/PhysRevLett.103.047402 CrossRefPubMedGoogle Scholar
  6. 6.
    M.A. Abdulsattar, T.R. Sultan, A.M. Saeed, Adv. Condens. Matter Phys. (2013).  https://doi.org/10.1155/2013/713267 CrossRefGoogle Scholar
  7. 7.
    B.K. Al-Rawi, Indian J. Nat. Sci. 8(46), 13067–13076 (2018)Google Scholar
  8. 8.
    NIST Computational Chemistry Comparison and Benchmark Database, Release 15b (2011), http://cccbdb.nist.gov/. Accessed 1 July 2014
  9. 9.
    Gaussian Inc., Gaussian 03, Revision B.01 (Gaussian Inc., Wallingford, 2003)Google Scholar
  10. 10.
    M.P. Surh, M.F. Li, S.G. Louie, Phys. Rev. B 43(5), 4286–4294 (1991)CrossRefGoogle Scholar
  11. 11.
    H.N. Nasir, M.A. Abdulsattar, H.M. Abduljalil (2012) Adv. Condens. Matter Phys.  https://doi.org/10.1155/2012/348254 CrossRefGoogle Scholar
  12. 12.
    M.A. Abdulsattar, Silicon 5(3), 229–237 (2013)CrossRefGoogle Scholar
  13. 13.
    A.N. Rosli, H.A. Kassim, K.N. Shrivastava, Sains Malays. 42(12), 1811–1814 (2013)Google Scholar
  14. 14.
    A.Q. Zhou, C.S. O’Hern, L. Regan, Biophys. J. 102(10), 2345–2352 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure ScienceUniversity of AnbarAnbarIraq
  2. 2.Department of Physics, College of ScienceUniversity of AnbarAnbarIraq

Personalised recommendations