Facile Preparation of Semiconductor Silver Phosphate Loaded on Multi-walled Carbon Nanotube Surface and Its Enhanced Catalytic Performance

  • Guangyu WuEmail author
  • Weinan Xing


A series of colloidal Ag3PO4 sphere loaded onto multi-walled carbon nanotube (CAPS-MWCNT) photocatalysts containing different mass ratio of MWCNT for the removal of RhB and phenol from waste water were synthesized. The photocatalysts were characterized by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, thermogravimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. By SEM and TEM test, the obtained Ag3PO4 form precipitated and colloidal method present different structure morphology and this showed an important effect on the photocatalytic activity. The CAPS-MWCNT photocatalysts were applied to the removal of Rhodamine B (RhB) and phenol from waste water; and the results indicated that CAPS-MWCNT sample can exhibit the high adsorption and photodegradation efficiency under visible light irradiation. For RhB, the removal efficiency of CAPS-MWCNT-4 reaches 99.8% within 50 min, of which adsorption efficiency is 76.5% within the former 30 min; for phenol, the removal efficiency of CAPS-MWCNT-4 reaches 90.6% within 110 min, of which adsorption efficiency is 14.2% within the former 30 min. The experiment results show that CAPS-MWCNT-4 has the highest removal efficiency for RhB while it presents an excellent reusability for removing phenol from waste water. The present work illustrates a new train for the design and synthesis of stable and high efficiency catalysts, applicable for the removal of various organic pollutants by adsorption and photodegradation.


Colloidal Ag3PO4 sphere Multi-walled carbon nanotube Photocatalyst Rhodamine B Phenol 

Supplementary material

10904_2018_1036_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1887 KB)


  1. 1.
    X.Y. Guo, C.F. Chen, W.Y. Song, X. Wang, W.H. Di, W.P. Qin, J. Mol. Catal. A 387, 1–6 (2014)CrossRefGoogle Scholar
  2. 2.
    J.R. Chen, F.X. Qiu, W.Z. Xu, S.S. Cao, H.J. Zhu, Appl. Catal. A 495, 131–140 (2015)CrossRefGoogle Scholar
  3. 3.
    L.Y. Min, G.Q. He, R.B. Li, W. Zhao, Y.C. Chen, Sep. Purif. Technol. 106, 97–104 (2013)CrossRefGoogle Scholar
  4. 4.
    W.F. Yao, B. Zhang, C.P. Huang, C. Ma, X.L. Song, Q.J. Xu, J. Mater. Chem. 22, 4050–4055 (2012)CrossRefGoogle Scholar
  5. 5.
    Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, Nat. Mater. 9, 559–564 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, X. Li, Y. Wang, C. Fan, J. Solid State Chem. 202, 51–56 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Cui, Y. Li, Q. Zhang, H. Wang, Int. J. Photoenergy 2012, 1–6 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Miao, X. Yue, X. Shen, Z. Ji, H. Zhou, G. Zhu, J. Wang, L. Kong, M. Liu, C. Song, Catal. Sci. Technol. 8, 632–641 (2018)CrossRefGoogle Scholar
  9. 9.
    C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do, Chem. Commun. 47, 7797–7799 (2011)CrossRefGoogle Scholar
  10. 10.
    J.F. Ma, J. Zou, L.Y. Li, C. Yao, Y. Kong, B.Y. Cui, R.L. Zhu, D.L. Li, Appl. Catal. B 144, 36–40 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu, Z. Kang, J. Mater. Chem. 22, 10501–10506 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, H. Zhang, H. Huang, Y. Liu, Z. Kang, New J. Chem. 36, 1541–1544 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Cui, X. Yang, Q. Gao, H. Liu, Y. Li, H. Tang, R. Zhang, J. Qin, X. Yan, Mater. Lett. 93, 28–31 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Bi, S. Ouyang, J. Cao, J. Ye, Phys. Chem. Chem. Phys. 13, 10071–10075 (2011)CrossRefGoogle Scholar
  15. 15.
    S.Y. Sawant, R.S. Somani, H.C. Bajaj, Carbon 48, 668–672 (2010)CrossRefGoogle Scholar
  16. 16.
    P. Serp, M. Corrias, P. Kalck, Appl. Catal. A 253, 337–358 (2003)CrossRefGoogle Scholar
  17. 17.
    E. van Steen, F.F. Prinsloo, Catal. Today 71, 327–334 (2002)CrossRefGoogle Scholar
  18. 18.
    V.R. Surisetty, A. Tavasoli, A.K. Dalai, Appl. Catal. A 365, 243–251 (2009)CrossRefGoogle Scholar
  19. 19.
    D.L. Xiao, H. Li, H. He, R. Lin, P.L. Zuo, New Carbon Mater. 29, 15–25 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Appl. Surf. Sci. 256, 4447–4455 (2010)CrossRefGoogle Scholar
  21. 21.
    J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, J. Hazard. Mater. 164, 1517–1522 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Yu, W.F. Lin, L.H. Leng, S.K. Bao, J.P. Zou, X.B. Luo, D.Z. Chen, S.L. Luo, C.T. Au, J. Mol. Catal. A 394, 121–128 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Khan, M. Qamar, Muneer, Chem. Phys. Lett. 519, 54–58 (2012)CrossRefGoogle Scholar
  24. 24.
    J.F. Guo, B.W. Ma, A.Y. Yin, K.N. Fan, W.L. Dai, Appl. Catal. B 101, 580–586 (2011)CrossRefGoogle Scholar
  25. 25.
    L.H. Ai, C.Y. Zhang, F. Liao, Y. Wang, M. Li, L.Y. Meng, J. Jiang, J. Hazard. Mater. 198, 282–290 (2011)CrossRefGoogle Scholar
  26. 26.
    W. Teng, X.Y. Li, Q.D. Zhao, J.J. Zhao, D.K. Zhang, Appl. Catal. B 125, 538–545 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Bahrami, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 27, 833–840 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.F. Wang, X.L. Li, Y.W. Wang, C.M. Fan, J. Solid State Chem. 202, 51–56 (2013)CrossRefGoogle Scholar
  29. 29.
    S.N. Zhang, S.J. Zhang, L.M. Song, Appl. Catal. B 152, 129–139 (2014)CrossRefGoogle Scholar
  30. 30.
    H.J. Dong, G. Chen, J.X. Sun, C.M. Li, Y.G. Yu, D.H. Chen, Appl. Catal. B 134, 46–54 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Liu, M.L. Wang, C.X. Xu, S.F. Chen, X.L. Fu, Mater. Res. Bull. 48, 106–113 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Chen, J. Hazard. Mater. 217, 107–115 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, J. Phys. Chem. B 110, 4066–4072 (2006)CrossRefGoogle Scholar
  34. 34.
    D.L. Zhao, G.D. Sheng, C.L. Chen, X.K. Wang, Appl. Catal., B 111, 303–308 (2012)CrossRefGoogle Scholar
  35. 35.
    Y.X. Wang, S. Indrawirawan, X.G. Duan, H.Q. Sun, H.M. Ang, M.O. Tadé, S.B. Wang, Chem. Eng. J. 266, 12–20 (2015)CrossRefGoogle Scholar
  36. 36.
    D.K. Lee, I.S. Cho, S. Lee, S.T. Bae, J.H. Noh, D.W. Kim, K.S. Hong, Mater. Chem. Phys. 119, 106–111 (2010)CrossRefGoogle Scholar
  37. 37.
    G.D. Chen, M. Sun, Q. Wei, Y.F. Zhang, B.C. Zhu, B. Du, J. Hazard. Mater. 244, 86–93 (2013)CrossRefGoogle Scholar
  38. 38.
    S.M. Sun, W.Z. Wang, L. Zhang, J.H. Xu, Appl. Catal. B 125, 144–148 (2012)CrossRefGoogle Scholar
  39. 39.
    L.J. Zhu, K. Liu, H.B. Li, Y.G. Sun, M. Qiu, Solid State Sci. 20, 8–14 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Aslam, I.M.I. Ismail, N. Salah, S. Chandrasekaran, M.T. Qamar, A. Hameed, J. Hazard. Mater. 286, 127–135 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Prince, F. Tzompantzi, G. Mendoza-Damian, F. Hernandez-Beltran, J.S. Valente, Appl. Catal. B 163, 352–360 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations