Advertisement

Investigation on Structural and Dielectric Properties of Silica Nanoparticles Incorporated Poly(Ethylene Oxide)/Poly(Vinyl Pyrrolidone) Blend Matrix Based Nanocomposites

  • Shobhna Choudhary
  • R. J. Sengwa
Article
  • 30 Downloads

Abstract

Inorganic and organic materials based polymer nanocomposite (PNC) films, comprising silica (SiO2) nanoparticles as inorganic filler and the polymer blend of poly(ethylene oxide) (PEO) and poly(vinyl pyrrolidone) (PVP) as organic matrix (i.e., (PEO–PVP)-x wt% SiO2; x = 0, 1, 3 and 5) have been prepared by the solution-casting method. These PNC films are characterized by employing the scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscopy, and the dielectric relaxation spectroscopy (DRS). The effect of SiO2 nanofiller on the spherulite and porous morphology, miscibility of the polymers, PEO crystallite size, the degree of crystallinity, polymer–polymer and polymer-nanoparticle interactions, and from 20 Hz to 1 MHz range dielectric and electrical dispersion behaviour and also the structural dynamics of these PNC materials have been investigated. The porous morphology, structures of miscible phases, and the PEO crystallite length greatly alter with the incorporation of merely 1 wt% SiO2 in the polymer blend matrix which further changes with the increase of nanofiller concentration up to 5 wt%. The real part of complex permittivity over the radio frequency range (20 kHz–1 MHz) for these PNC films is found about 2 and their dielectric loss tangent values below 0.03, at the room temperature, which are significantly low. The contribution of interfacial polarization effect at lower audio frequencies enhances the complex permittivity of these materials linearly in the range 2 to 4 with the decrease of frequency from 1 kHz to 20 Hz confirming their frequency tunable dielectric behaviour. The dielectric study of 3 wt% SiO2 containing PNC film in the temperature range 30–60 °C reveals its thermally activated dielectric characteristics, and the temperature dependent values of dielectric relaxation time and dc electrical conductivity obey the Arrhenius behaviour with activation energies in the range 0.2–0.3 eV. The dielectric and electrical parameters ascertain the promising applications of these PNC films in the development of novel electroactive functional materials, and also their use as the dielectric substrate and electrical insulating polymeric nanodielectrics for the fabrication of flexible-type naturally degradable organoelectronic devices.

Keywords

Polymer nanocomposite Dielectric properties Electrical conductivity XRD FTIR 

Notes

Acknowledgements

Authors are thankful to Dr. Sukhvir Singh, Emeritus Scientist, CSIR–NPL, New Delhi, for extending FTIR facility.

References

  1. 1.
    A.I. Isayev, Encyclopedia of Polymer Blends (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)Google Scholar
  2. 2.
    L.A. Utracki, C. Wilkie, Polymer Blend Handbook (Springer, The Netherlands, 2014)CrossRefGoogle Scholar
  3. 3.
    S. Thomas, Y. Grohens, P. Jyotishkumar, Characterization of Polymer Blends: Miscibility, Morphology and Interfaces (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015)Google Scholar
  4. 4.
    N.N. Sedeh, M. Entezam, S.H. Jafari, H.-A. Khonakdar, M. Abdouss, Morphology, drug release behavior, thermal, and mechanical properties of poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends. J. Appl. Polym. Sci. 135, 46403 (2018)CrossRefGoogle Scholar
  5. 5.
    R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric spectroscopy of hydrophilic polymers–montmorillonite clay nanocomposite aqueous colloidal suspension. Coll. Surf. A 336, 79–87 (2009)CrossRefGoogle Scholar
  6. 6.
    R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/ montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 40617 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Ignatova, N. Manolova, I. Rashkov, Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex–a prospective route to antimicrobial wound dressing materials. Eur. Polym. J. 43, 1609–1623 (2007)CrossRefGoogle Scholar
  8. 8.
    K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, Electrical conduction mechanism in NaCl complexes PEO/PVP polymer blend electrolytes. J. Non Cryst. Solids 358, 3205–3211 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha, Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014)CrossRefGoogle Scholar
  10. 10.
    H.M. Ragab, F. Ahmad, Sh.N. Radwan, Change spectroscopic studies and optimization electrical properties of PVP/PEO doped copper pthalocyanines. Phys. B 502, 97–102 (2016)CrossRefGoogle Scholar
  11. 11.
    A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Naveen Kumar, M. Kang, G.B. Kumar, Y.C. Ratnakaram, Energy transfer based photoluminescence properties of (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications. Opt. Mater. 54, 6–13 (2016)CrossRefGoogle Scholar
  13. 13.
    M.A. Morsi, A.M. Abdelghany, UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Huang, C. Zhi, Polymer Nanocomposites (Springer International Publishing, Switzerland, 2016)Google Scholar
  16. 16.
    P. Maji, R.B. Choudhary, M. Majhi, Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik 127, 4848–4853 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18, 1041–1058 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Wu, S. Guo, Y. Yin, G. Sun, Y. Zhong, B. You, Hollow microspheres of SiO2/PMMA nanocomposites: preparation and their application in light diffusing films. J. Inorg. Organomet. Polym Mater. 28, 2701–2713 (2018)CrossRefGoogle Scholar
  19. 19.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Qiao, M.S. Islam, K. Han, E. Leonhardt, J. Zhang, Q. Wang, H.J. Ploehn, C. Tang, Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv. Funct. Mater. 23, 5638–5646 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Luzio, F.G. Ferré, F.D. Fonzo, M. Caironi, Hybrid nanodielectrics for low-voltage organic electronics. Adv. Funct. Mater. 24, 1790–1798 (2014)CrossRefGoogle Scholar
  22. 22.
    Prateek, V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Tanaka, A.S. Vaughan, Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications (Temasek Boulevard, Pan Stanford Publishing Pte. Ltd., Singapore, 2017)Google Scholar
  24. 24.
    J. Anandraj, G.M. Joshi, Fabrication, performance and applications of integrated nanodielectric properties of materials—a review, Compos. Interfaces 25, 455–489 (2018)Google Scholar
  25. 25.
    G. Polizos, E. Tuncer, V. Tomer, I. Sauers, C.A. Randall, E. Manias, Dielectric spectroscopy of polymer-based nanocomposite dielectrics with tailored interfaces and structured spatial distribution of fillers, in Nanoscale Spectroscopy with Applications, ed. by S.M. Musa (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013)Google Scholar
  26. 26.
    S. Choudhary, R.J. Sengwa, Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 247, 924–941 (2017)CrossRefGoogle Scholar
  27. 27.
    T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf. Coat. Technol. 206, 742–752 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28, 1394–1401 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Xu, H. Zhang, L. Jin, Y. Li, J. Li, G. Gan, M. Wei, M. Li, Y. Liao, Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J. Mater. Sci. 53, 2638–2647 (2018)CrossRefGoogle Scholar
  30. 30.
    R. Kaur, J. Singh, S.K. Tripathi, Incorporation of inorganic nanoparticles into an organic polymer matrix for data storage application. Curr. Appl. Phys. 17, 756–762 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 147, 30–38 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym. Mater. 28, 1114–1126 (2018)CrossRefGoogle Scholar
  33. 33.
    R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Comps. Sci. Tech. 70, 1621–1627 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Choudhary, R.J. Sengwa, Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym. Bull. 72, 2591–2604 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Choudhary, R.J. Sengwa, Anomalous behaviour of the dielectric and electrical properties of polymeric nanodielectric poly(vinyl alcohol)–titanium dioxide films. J. Appl. Polym. Sci. 134, 44568 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Choudhary, R.J. Sengwa, Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J. Polym. Res. 24, 54 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Choudhary, Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys. B 522, 48–56 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Choudhary, Structural, morphological, thermal, dielectric, and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix-based polymer nanocomposites. Polym. Compos. 39, E1788–E1799 (2018)CrossRefGoogle Scholar
  39. 39.
    S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci. Mater. Electron. 29, 10517–10534 (2018)CrossRefGoogle Scholar
  40. 40.
    S. Choudhary, Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J. Polym. Res. 25, 116 (2018) (2018)CrossRefGoogle Scholar
  41. 41.
    R.J. Sengwa, S. Choudhary, Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J. Alloys Compd. 701, 652–659 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids 121, 196–209 (2018)CrossRefGoogle Scholar
  43. 43.
    H. Zhou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties and applications. Chem. Rev. 108, 3893–3957 (2008)CrossRefGoogle Scholar
  44. 44.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M. Al-Ali AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 134, 44427 (3017)Google Scholar
  45. 45.
    Q. Wei, Y. Zhang, Y. Wang, M. Yang, A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J. Mater. Sci. 52, 12889–12901 (2017)CrossRefGoogle Scholar
  46. 46.
    V. Mentlik, O. Michal, Influence of SiO2 nanoparticles and nanofibrous filler on the dielectric properties of epoxy-based composites. Mater. Lett. 223, 41–44 (2018)CrossRefGoogle Scholar
  47. 47.
    W. Zhao, Y. Su, A.J. Müller, X. Gao, D. Wang, Direct relationship between interfacial microstructure and confined crystallization in poly(ethylene oxide)/silica composites: the study of polymer molecular weight effects. J. Polym. Sci. B 55, 1608–1616 (2017)CrossRefGoogle Scholar
  48. 48.
    C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, Y. Li, Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 4, 5726–5734 (2013)CrossRefGoogle Scholar
  49. 49.
    I.S. Elashmawi, N.H. Elsayed, F.A. Altalhi, The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles. J. Alloys Compd. 617, 877–883 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVDF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24, 243–255 (2018)CrossRefGoogle Scholar
  51. 51.
    S. Botsi, C. Tsamis, M. Chatzichristidi, G. Papageorgiou, E. Makarona, Facile and cost-efficient development of PMMA-based nanocomposites with custom-made hydrothermally-synthesized ZnO nanofillers. Nano Struct. Nano Objects 17, 7–20 (2019)CrossRefGoogle Scholar
  52. 52.
    M.N. Tamaňo-Machiavello, C.M. Costa, F.J. Romero-Colomer, J.M.M. Dueňas, S. Lanceros-Mendez, J.L.G. Ribelles, Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. J. Polym. Sci. Polym. Phys. 56, 588–597 (2018)CrossRefGoogle Scholar
  53. 53.
    N. An, H. Liu, Y. Ding, M. Zhang, Y. Tang, Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 257, 3831–3835 (2011)CrossRefGoogle Scholar
  54. 54.
    Z. Wang, T. Wang, Y. Xiao, W. Nian, H. Chen, High energy storage density of poly(vinylidene fluoride) bulk nanocomposites at low electric field induced by giant dielectric constant ceramic nanopowders. Ceram. Int. 44, S181–S185 (2018)CrossRefGoogle Scholar
  55. 55.
    C.L. Yang, Z.H. Li, W.J. Li, H.Y. Liu, Q.Z. Xiao, G.T. Lei, Y.H. Ding, Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries. J. Membr. Sci. 495, 341–350 (2015)CrossRefGoogle Scholar
  56. 56.
    S. Choudhary, Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos. Commun. 5, 54–63 (2017)CrossRefGoogle Scholar
  57. 57.
    V. Jollet, F. Chambon, F. Rataboul, A. Cabiac, C. Pinel, E. Guillon, N. Essayem, Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chem. 11, 2052–2060 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Heng, M. Liu, K. Wang, F. Deng, H. Huang, Q. Wan, J. Hui, X. Zhang, Y. Wei, Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram. Int. 41, 15075–15082 (2015)CrossRefGoogle Scholar
  59. 59.
    S.R.A. Karim, L.H. Sim, C.H. Chan, H. Ramli, On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol. Symp. 354, 374–383 (2015)CrossRefGoogle Scholar
  60. 60.
    C. Huang, L. Zhang, Miscibility of poly(vinylidene fluoride) and atactic poly(methyl methacrylate). J. Appl. Polym. Sci. 92, 1–5 (2004)CrossRefGoogle Scholar
  61. 61.
    M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew,, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci. 29, 1992–2000 (2018)Google Scholar
  62. 62.
    M.S. Gaur, A.P. Indolia, A.A. Rogachev, A.V. Rahachou, Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J. Therm. Anal. Calorim. 122, 1403–1416 (2015)CrossRefGoogle Scholar
  63. 63.
    Z. Liu, F. Wang, H. Zhu, Enhanced dielectric properties of poly vinylidene fluoride with addition of SnO2 nanoparticles. Phys. Status Solidi RRL 10, 753–756 (2016)CrossRefGoogle Scholar
  64. 64.
    S. Javadi, M. Razzaghi-Kashani, P.N.B. Reis, A.A. Balado, Interfacial effects on dielectric properties of polymethylmethacrylate-titania microcomposites and nanocomposites. Polym. Compos. 38, 1158–1166 (2017)CrossRefGoogle Scholar
  65. 65.
    F. Mao, Z. Shi, J. Wang, C. Zhang, C. Yang, M. Huang, Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv. Compos. Hybrid Mater. 1, 548–557 (2018)CrossRefGoogle Scholar
  66. 66.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A.A. AlMaadeed, K. Chidambaram, Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J. Mater. Sci. Mater. Electron. 28, 973–986 (2017)CrossRefGoogle Scholar
  67. 67.
    E. Dhanumalayan, G.M. Joshi, High performance thermoplastic blends modified by potassium hexatitanate for dielectric applications. J. Inorg. Organomet. Polym. Mater. 28, 1775–1786 (2018)CrossRefGoogle Scholar
  68. 68.
    P. Maji, R.B. Choudhary, M. Majhi, Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application. Appl. Phys. A 124, 70 (2018)CrossRefGoogle Scholar
  69. 69.
    P. Jayakrishnan, M.T. Ramesan, Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl alcohol) blend nanocomposites. J. Inorg. Organomet. Polym. Mater. 27, 323–333 (2017)CrossRefGoogle Scholar
  70. 70.
    A. Uğur Kaya, S. Güner, K. Esmer, Effects of solution mixing temperature on dielectric properties of PMMA/pristine bentonite nanocomposites. J. Appl. Polym. Sci. 131, 39907 (2014)CrossRefGoogle Scholar
  71. 71.
    S. Ketabi, K. Lian, Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim. Acta 103, 174–178 (2013)CrossRefGoogle Scholar
  72. 72.
    J. Yuan, S. Yao, P. Poulin, Dielectric constant of polymer composites and the routes to high-k or low-k nanocomposite materials, in Polymer Nanocomposites, ed. by X. Huang, C. Zhi (Springer International Publishing, Switzerland, 2016)Google Scholar
  73. 73.
    P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J. Phys. Chem. Solids 111, 266–273 (2017)CrossRefGoogle Scholar
  74. 74.
    J. Anandraj, G.M. Joshi, Zirconia sulphate dispersed polymer composites for electronic applications. J. Inorg. Organomet. Polym. Mater. 27, 1835–1850 (2017)CrossRefGoogle Scholar
  75. 75.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J. Polym. Res. 23, 159 (2016)CrossRefGoogle Scholar
  76. 76.
    G.N. Mathioudakis, A.C. Patsidis, G.C. Psarras, Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J. Therm. Anal. Calorim. 116, 27–33 (2014)CrossRefGoogle Scholar
  77. 77.
    R.J. Sengwa, P. Dhatarwal, S. Choudhary, Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters. Electrochim. Acta 142, 359–370 (2014)CrossRefGoogle Scholar
  78. 78.
    R.J. Sengwa, P. Dhatarwal, S. Choudhary, Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr. Appl. Phys. 15, 135–143 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dielectric Research Laboratory, Department of PhysicsJai Narain Vyas UniversityJodhpurIndia
  2. 2.CSIR-National Institute of Science Communication And Information ResourcesNew DelhiIndia

Personalised recommendations