Electrospun Magnetic Zeolite/Polyacrylonitrile Nanofibers for Extraction of PAHs from Waste Water: Optimized with Central Composite Design

  • Marjan Asadi
  • Syed ShahabuddinEmail author
  • Afsaneh Mollahosseini
  • Jesbains Kaur
  • R. Saidur


The present study discovered the synthesis of a novel and efficient magnetic nanofiber fabricated via electrospinning of polyacrylonitrile (PAN) and magnetic zeolite (PAN–MZeo). The synthesized nanofiber was applied as magnetic solid phase extraction (MSPE) adsorbent, for the determination of polycyclic aromatic hydrocarbons (PAHs) in water samples prior to gas chromatography flame ionization detector (GC-FID). Response surface methodology based on the central composite design was employed for the optimization of the various parameters including sorbent amount, desorption solvent volume, adsorption and desorption time on the extraction efficiency. Excellent linearity was achieved at optimized conditions, with coefficients of determination (R2) between 0.9948 and 0.9977. The limit of detections for PAHs was in the range of 0.14–0.21 ng mL−1. The repeatability and reproducibility precision (RSD%) were less than 10%. The real sample analysis showed satisfactory extraction recovery (92–113%) for the five selected PAHs in agricultural, well and mineral water samples. Therefore, the newly fabricated PAN–MZeo–MSPE is an accurate, rapid, and reliable sample-pretreatment method based on comparisons from previous studies.


Magnetic solid phase extraction PAN/magnetic zeolite Composite nanofibers Polycyclic aromatic hydrocarbons Central composite design 



We are grateful to Research Council of Iran University of Science and Technology (IUST), Iran.


  1. 1.
    Y. Zou, Y. Chen, Z. Yan, C. Chen, J. Wang, S. Yao, Analyst 138, 5904 (2013)CrossRefGoogle Scholar
  2. 2.
    J.L. Benedé, J.L. Anderson, A. Chisvert, Talanta 176, 253 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Wei, W. Lin, J. Xu, Y. Wang, S. Liu, F. Zhu, Y. Liu, G. Ouyang, Anal. Chim. Acta 971, 48 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Xing, M. Wang, T. Li, Y.X. Fu, X. Wang, J. Sep. Sci. 41, 2453 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Sarafraz-Yazdi, T. Rokhian, A. Amiri, F. Ghaemi, New J. Chem 39, 5621 (2015)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, Q. Han, J. Xia, L. Xia, M. Ding, J. Tang, J. Sep. Sci. 36, 1834 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, S. Yao, Analyst 139, 5818 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Aqel, L. Al Wahibi, Z.A. ALOthman, A.Y. Badjah-Hadj-Ahmed, J. Chromatogr. A 1535, 17 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Wang, Y. Zheng, J. Qiu, S. Liu, Y. Tong, F. Zhu, G. Ouyang, Nanoscale 10, 10073 (2018)CrossRefGoogle Scholar
  10. 10.
    M.N. Yazdi, Y. Yamini, H. Asiabi, J. Chromatogr. A 1554, 8 (2018)CrossRefGoogle Scholar
  11. 11.
    K. Jaworek, Anal. Lett. 51, 469 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Mao, B. Hu, M. He, W. Fan, J. Chromatogr. A 1260, 16 (2012)CrossRefGoogle Scholar
  13. 13.
    E. Noroozian, M. Rahimi, J. Liq. Chromatogr. Relat. Technol 38, 172 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Geng, Y. Fang, R. Xie, W. Hu, X. Xi, Q. Chu, G. Dong, N. Shaheen, Y. Wei, J. Sep. Sci. 40, 991 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Speltini, M. Sturini, F. Maraschi, A. Profumo, Trends Environ. Anal. Chem. 10, 11 (2016)CrossRefGoogle Scholar
  16. 16.
    W.A. Wan Ibrahim, H. Rashidi Nodeh, H.Y. Aboul-Enein, M.M. Sanagi, Crit. Rev. Anal. Chem 45, 270 (2015)CrossRefGoogle Scholar
  17. 17.
    S.W. Xue, M.Q. Tang, L. Xu, Z. Shi, J. Chromatogr. A 1411, 9 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Mollahosseini, M. Toghroli, M. Kamankesh, J. Sep. Sci. 38, 3750 (2015)CrossRefGoogle Scholar
  19. 19.
    D.B. Zhou, X. Sheng, F. Han, Y.Y. Hu, L. Ding, Y.L. Lv, W. Song, P. Zheng, J. Chromatogr. A (2018). Google Scholar
  20. 20.
    F. Yang, Y. Long, R. Shen, C. Chen, D. Pan, Q. Zhang, Q. Cai, S. Yao, J. Sep. Sci. 34, 716 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Ahmadi, M. Rajabi, F. Faizi, M. Rahimi-Nasrabadi, B. Maddah, Int. J. Environ. Anal. Chem. 94, 1123 (2014)CrossRefGoogle Scholar
  22. 22.
    A.A. Karamani, A.P. Douvalis, C.D. Stalikas, J. Chromatogr. A 1271, 1 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Li, O. Zhou, Y. Liu, M. Lei, STAM 18, 3 (2017)Google Scholar
  24. 24.
    S. Shegefti, A. Mehdinia, F. Shemirani, Microchim. Acta 183, 1963 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Zhang, Y. Cui, J. Sun, Y. Xi, C. Zhang, J. Tang, Anal. Methods 7, 4209 (2015)CrossRefGoogle Scholar
  26. 26.
    F. Ma, P. Li, Q. Zhang, L. Yu, L. Zhang, Food Chem. 178, 259 (2015)CrossRefGoogle Scholar
  27. 27.
    E. Fernández, L. Vidal, A. Canals, J. Chromatogr. A 1458, 18 (2016)CrossRefGoogle Scholar
  28. 28.
    O. Saligheh, R. Khajavi, M.E. Yazdanshenas, A. Rashidi, J. Macromol. Sci. Part B 54, 1391 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Kulprathipanja, Zeolites in industrial separation and catalysis (Wiley, New York, 2010)CrossRefGoogle Scholar
  30. 30.
    M. Wołowiec, B. Muir, K. Zięba, T. Bajda, M. Kowalik, W. Franus, Energy Fuels 31, 8803 (2017)CrossRefGoogle Scholar
  31. 31.
    V. Javanbakht, S.M. Ghoreishi, N. Habibi, M. Javanbakht, Powder Technol. 302, 372 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Asiabi, A. Mehdinia, A. Jabbari, Microchim. Acta 184, 4495 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Asiabi, A. Mehdinia, A. Jabbari, J. Chromatogr. A 1426, 24 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Bahi, J. Shao, M. Mohseni, F.K. Ko, Sep. Purif. Technol. 187, 207 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Mollahosseini, M. Toghroli, J. Asian Sci. Res. 5, 120 (2015)Google Scholar
  36. 36.
    J.E. Knoll, J. Chromatogr. Sci 23, 422 (1985)CrossRefGoogle Scholar
  37. 37.
    Q. Fang, X. Liu, N. Wang, C. Ma, F. Yang, Sci. Eng. Compos. Mater. 22, 607 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Lee, J. Kim, B.C. Ku, J. Kim, H.I. Joh, Adv. Chem. Eng. Sci. 2, 275 (2012)CrossRefGoogle Scholar
  39. 39.
    Z. Safidine, Z. Ghebache, S. Lamouri, Polym. J. 45, 946 (2013)CrossRefGoogle Scholar
  40. 40.
    H. Bagheri, A. Roostaie, R. Daliri, Anal. Methods 6, 5838 (2014)CrossRefGoogle Scholar
  41. 41.
    G. Daneshvar Tarigh, F. Shemirani, Talanta 115, 744 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Zhang, W.P. Low, H.K. Lee, J. Chromatogr. A 1233, 16 (2012)CrossRefGoogle Scholar
  43. 43.
    N.N. Naing, S.F.Y. Li, H.K. Lee, J. Chromatogr. A 1440, 23 (2016)CrossRefGoogle Scholar
  44. 44.
    A. Mehdinia, N. Khodaee, A. Jabbari, Anal. Chim. Acta 868, 1 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Bai, B. Mei, Q.Z. Gu, Z.G. Shi, Y.Q. Feng, J. Chromatogr. A 1217, 7331 (2010)CrossRefGoogle Scholar
  46. 46.
    M. Zhang, G. Huang, J. Huang, W. Chen, Microchem. J. 142, 385 (2018)CrossRefGoogle Scholar
  47. 47.
    Q. Zhou, M. Lei, Y. Wu, Y. Yuan, J. Chromatogr. A 1487, 22 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Abbasi, A. Sarafraz-Yazdi, A. Amiri, F. Ghaemi, J. Iran. Chem. Soc. 15, 153 (2018)CrossRefGoogle Scholar
  49. 49.
    E. Tahmasebi, Y. Yamini, Anal. Chim. Acta 756, 13 (2012)CrossRefGoogle Scholar
  50. 50.
    M. Wang, S. Cui, X. Yang, W. Bi, Talanta 132, 922 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of TehranTehranIran
  2. 2.Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of ChemistryIran University of Science and TechnologyTehranIran
  3. 3.Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Science and TechnologySunway UniversitySubang JayaMalaysia
  4. 4.Department of EngineeringLancaster UniversityLancashireUK

Personalised recommendations