Advertisement

Structural, Optical, Electrical and Magnetic Studies of PANI/Ferrite Nanocomposites Synthesized by PLD Technique

  • Alyaa H. AbdalsalamEmail author
  • Ali A. AtiEmail author
  • Alla Abduljabbar
  • Thulfiqar Ali Hussein
Article

Abstract

In the present work PANI, 90%PANI/10%Ni0.8Zn0.2Fe2O4 and 90%PANI/10% Ni0.2Zn0.8Fe2O4 thin films were deposited successfully on the p-type Si-substrates by employing pulsed laser deposition technique (PLD), while the ferrite nanoparticles were synthesized by gel method. The interaction between ferrite nano powders and polyaniline has been studied by using X-ray diffraction (XRD), scanning electron microscope (SEM), UV–Vis spectrum, I–V characteristics and vibration sample micrometer (VSM). X-ray diffraction confirmed the presence of PANI and ferrite phases in the thin film nanocomposites. The average crystalline size value of 90%PANI/10%Ni0.8Zn0.2Fe2O4 and 90%PANI/10%Ni0.2Zn0.8Fe2O4 nanocomposite was estimated by utilizing Scherrer’s formula, they were found 20 nm and 25 nm, respectively. SEM images of the PANI and PANI/ferrite showed dense and inhomogeneous film morphology. The versatile optical properties of PANI/ferrite thin film nanocomposites are important for solar cell application. The obtained optical band gap for 90%PANI/10%Ni0.8Zn0.2Fe2O4 (2.45 eV) is less than pure PANI (2.8 eV) thin film. The lowering in the band gap value of 90%PANI/10%Ni0.8Zn0.2Fe2O4 nanocomposite film could be assigned to band edge bending phenomena. The light sensing behavior of the polyaniline/ferrite nanocomposites were examined at room temperature and showed higher response as compared to pure PANI film. Temperature dependence resistance characteristic was investigated in range between 25 and 100 °C under air atmosphere. The results showed that the dc resistance gradually decreases with the temperature increases and showing the semiconductor behavior of the prepared samples. The measured electrical resistance and band gap energy strongly suggest that the film with composition 90%PANI/10%Ni0.8Zn0.2Fe2O4 is a suitable candidate to be used in solar cell applications.

Keywords

PANI/ferrite Thin films Pulsed laser deposition Physical properties 

Notes

Acknowledgements

The author would like to thank the Nanotechnology and Advanced Materials Center of University of Technology (UOT) and Universiti Teknologi PETRONAS/Department of Applied Science for analyze vibration sample magnetometer (VSM) data.

References

  1. 1.
    Y. Shen, Q. Zhao, X. Li, D. Yuan, Y. Hou, S. Liu, Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: in situ FTIR investigation, J. Hazard. Mater. 241–242, 472–477 (2012)CrossRefGoogle Scholar
  2. 2.
    M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al Angari, Polyaniline/Co0.6Zn0.4Fe2O4 core-shell nano-composites. Synthesis, characterization and properties. J. Alloy. Compd. 747, 83–90 (2018)CrossRefGoogle Scholar
  3. 3.
    N.N. Ali, Y. Atassi, A. Salloum, A. Charba, A. Malki, M. Jafarian, Comparative study of microwave absorption characteristics of (polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages. Mater. Chem. Phys. 211, 79–87 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Zuo, Z. Yao, H. Lin, J. Zhou, P. Liu, W. Chen, C. Shen, Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties. J. Alloy. Compd. 746, 496–502 (2018)CrossRefGoogle Scholar
  5. 5.
    N.N. Ali, R. Al-Qassar, B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, Design of lightweight broadband microwave absorbers in the X-band based on (polyaniline/MnNiZn ferrite) nanocomposites. J. Magn. Magn. Mater. 453, 53–61 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Mohanraju, V. Sreejith, R. Ananth, L. Cindrella, Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J. Power Sour. 284, 383–391 (2015)CrossRefGoogle Scholar
  7. 7.
    I.Z. Mohamad Ahad, S. Wadi Harun, S.N. Gan, S.W. Phang, Polyaniline (PAni) optical sensor in chloroform detection. Sens. Actuators B 261, 97–105 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci.: Adv. Mater. Devices 1, 225–255 (2016)Google Scholar
  9. 9.
    X. Zhang, X. Meng, Q. Wang, B. Qin, L.e. Jin, Q. Cao, Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor. Mater. Lett. 217, 312–315 (2018)CrossRefGoogle Scholar
  10. 10.
    I. Sowa, R. Kocjan, M. Wójciak-Kosior, R. Świeboda, D. Zajdel, M. Hajnos, Physicochemical properties of silica gel coated with a thin layer of polyaniline (PANI) and its application in non-suppressed ion chromatography. Talanta 115, 451–456 (2013)CrossRefGoogle Scholar
  11. 11.
    N.A. Oladoja, E.T. Anthony, I.A. Ololade, T.D. Saliu, G.A. Bello, Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system. J. Photochem. Photobiol. A 353, 229–239 (2018)CrossRefGoogle Scholar
  12. 12.
    M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Liu, L. Wang, K. Chou, Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method. J. Magn. Magn. Mater. 449, 49–54 (2018)CrossRefGoogle Scholar
  14. 14.
    T. Vigneswari, P. Raji, Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method. J. Mol. Struct. 1127, 515–521 (2017)CrossRefGoogle Scholar
  15. 15.
    K.K. Bhatt, Y.S. Niwate, S.S. Garje, D.C. Kothari, Room temperature magnetism in zinc nano ferrite synthesized by a novel oxalate-ceramic method. Mater. Chem. Phys. 161, 256–259 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Xiao, X. Sun, H. Zhang, C. Wang, L. Liu, Z. Yang, T. Zhang, L.B. Kong, Low temperature sintered magneto-dielectric ferrite ceramics with near net-shape derived from high-energy milled powders. J. Alloy. Compd. 751, 28–33 (2018)CrossRefGoogle Scholar
  17. 17.
    A.A. Ati, Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale. J. Mater. Sci.: Mater. Electron. 29, 12010–12021 (2018)Google Scholar
  18. 18.
    M. Hashim, S.E. Shirsath, S.S. Meena, M.L. Mane, S. Kumar, P. Bhatt, R. Kumar, N.K. Prasad, S.K. Alla, J. Shah, R.K. Kotnala, K.A. Mohammed, E. Şentürk, Alimuddin, Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J. Alloy. Compd. 642, 70–77 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Sozeri, U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 5137–5143 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite: preparation, characterization and properties. Mater. Sci. Eng.: A 456, 300–304 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6, 555–562 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Qindeel, N.H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr. Appl. Phys. 18, 519–525 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Su, C. Liao, P.-H. Lee, H. Li, K. Shih, Formation and leaching behavior of ferrite spinel for cadmium stabilization. Chem. Eng. Sci. 158, 287–293 (2017)CrossRefGoogle Scholar
  24. 24.
    A.A. Ati, Z. Othaman, A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Ji, C. Tian, Q. Zhang, D. Ji, J. Yang, J. Xie, J. Si, Magnetic properties of samarium and gadolinium co-doping Mn–Zn ferrites obtained by sol-gel auto-combustion method. J. Rare Earths 34, 1017–1023 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517–S522 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Mehto, V. Mehto, J. Chauhan, I. Singh, R. Pandey, Preparation and characterization of polyaniline/ZnO composite sensor. J. Nanomed. Res. 5, 00104 (2017)Google Scholar
  28. 28.
    J. Stejskal, I. Sapurina, Polyaniline: thin films and colloidal dispersions (IUPAC Technical Report) (2005)Google Scholar
  29. 29.
    S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 1089, 25–31 (2015)CrossRefGoogle Scholar
  30. 30.
    Z.-N. Ng, K.-Y. Chan, C.-Y. Low, S.A. Kamaruddin, M.Z. Sahdan, Al and Ga doped ZnO films prepared by a sol–gel spin coating technique. Ceram. Int. 41, S254–S258 (2015)CrossRefGoogle Scholar
  31. 31.
    S.B. Kondawar, A.I. Nandapure, B.I. Nandapure, Nanocrystalline nickel ferrite reinforced conducting polyaniline nanocomposites. Adv. Mater. Lett. 5, 339–344 (2014)CrossRefGoogle Scholar
  32. 32.
    T.K. Mahto, A.R. Chowdhuri, S.K. Sahu, Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater, J. Appl. Polym. Sci. (2014).  https://doi.org/10.1002/app.40840 Google Scholar
  33. 33.
    D. Akcan, A. Gungor, L. Arda, Structural and optical properties of Na-doped ZnO films. J. Mol. Struct. 1161, 299–305 (2018)CrossRefGoogle Scholar
  34. 34.
    J.-Q. Wen, J.-M. Zhang, Z.-G. Qiu, X. Yang, Z.-Q. Li, The investigation of Ce doped ZnO crystal: the electronic, optical and magnetic properties. Physica B 534, 44–50 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Karimi, M.A.A. Sadatlu, B. Saberi, H. Shariatmadar, M. Ashjaee, Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv. Powder Technol. 26, 1529–1536 (2015)CrossRefGoogle Scholar
  36. 36.
    M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater. Res. Bull. 47, 683–686 (2012)CrossRefGoogle Scholar
  37. 37.
    M.J. Iqbal, M.N. Ashiq, P.H. Gomez, Effect of doping of Zr–Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J. Alloy. Compd. 478, 736–740 (2009)CrossRefGoogle Scholar
  38. 38.
    S. Sultana, M. Rafiuddin, Z. Khan, K. Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloy. Compd. 535, 44–49 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang, Y. Wu, Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl. Surf. Sci. 258, 3659–3666 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, Y. Du, Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process. J. Magn. Magn. Mater. 377, 52–58 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Ajmal, M.U. Islam, Structural, optical and dielectric properties of polyaniline-NI0.5ZN0.5Fe2O4 nano-composites. Physica B 521, 355–360 (2017)CrossRefGoogle Scholar
  42. 42.
    E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Conductivity study of polyaniline-cobalt ferrite (PANI–CoFe2O4) nanocomposite. Nano-Micro Lett. 3, 99–107 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Bajt, S.R. Sutton, J.S. Delaney, X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochim. Cosmochim. Acta 58, 5209–5214 (1994)CrossRefGoogle Scholar
  44. 44.
    A. Molak, D.K. Mahato, A.Z. Szeremeta, Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: materials for applications. Prog. Cryst. Growth Charact. Mater. 64, 1–22 (2018)CrossRefGoogle Scholar
  45. 45.
    G. Prasanna, R. Ashok, V. Prasad, H. Jayanna, Synthesis and characterization of magnetic and conductive nickel ferrite–polyaniline nanocomposites. J. Compos. Mater. 49, 2649–2657 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanotechnology and Advanced Materials Research CenterUniversity of Technology (UOT)BaghdadIraq

Personalised recommendations