Functionalization of B33N33H22 Nanosheets with α-Amidino Carboxylic Acids: A DFT Study

  • Zahra Zaghari
  • Javad AzizianEmail author


Using density functional theory calculations (based on the B3LYP/6-31G(d) method), we investigated the functionalization of a BN nanosheet (B33N33H22) by different α-amidino carboxylic acids (ACA). It was found that the pristine BN sheet can be noncovalently functionalized by the ACA with an adsorption energy of about − 2.7 kcal/mol. Also, the results showed that structural Stone–Wales (SW) defects significantly increase the adsorption energy. The SW-BN nanosheet transforms from an insulator to a semiconductor by covalent functionalization. Incorporating –NH2 and –NO2 groups in the structure of the ACA molecule increases and decreases the adsorption energy, respectively. The –NH2 group compared to the –NO2 was found to be more favorable for covalent functionalization especially when it is substituted at the meta position of phenyl group of ACA molecule. Investigating the effect of some other electron donating groups showed that the favorability order of applied groups for functionalization is as follows: –N(CH3)2 > –OH > –NH2 > –OCH3 > –Phenyl > –F. Furthermore, it was found that the solubility of BN nanosheets significantly increases, depending on the type of functional group.


Functionalization BN graphene DFT Solvation Electronic properties 


  1. 1.
    M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Ahmadi Peyghan, H. Soleymanabadi, Z. Bagheri, Hydrogen release from NH3 in the presence of BN graphene: DFT studies. J. Mex. Chem. Soc. 59, 67–73 (2015)Google Scholar
  4. 4.
    L. Wang, J. Huo, H. Yu, T. Chen, L. Deng, A Novel approach for preparation of nano-gold particles/carbon nanotube composites from gold film, poly(ferrocenylsilane) and acetylene. J. Inorg. Organomet. Polym Mater. 17, 121–125 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Selvaduray, L. Sheet, Aluminium nitride: review of synthesis methods. Mater. Sci. Technol. 9, 463–473 (1993)CrossRefGoogle Scholar
  6. 6.
    M. Samadizadeh, A.A. Peyghan, S.F. Rastegar, Sensing behavior of BN nanosheet toward nitrous oxide: a DFT study. Chin. Chem. Lett. 26, 1042–1045 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Nie, Y. Jia, P. Qu, Q. Shi, Carbon nanotube/carbon fiber multiscale composite: influence of interfacial strength on mechanical properties. J. Inorg. Organomet. Polym. Mater. 21, 937–940 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)CrossRefGoogle Scholar
  9. 9.
    X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009)CrossRefGoogle Scholar
  10. 10.
    K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Ciofani, G.G. Genchi, I. Liakos, A. Athanassiou, D. Dinucci, F. Chiellini, V. Mattoli, A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 374, 308–314 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10, 5049–5055 (2010)CrossRefGoogle Scholar
  13. 13.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Sławińska, I. Zasada, Z. Klusek, Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81, 155433–155439 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Jalilian, H. Zahrabi, J. Jalilian, F. Soofivand, S. Farshadfar, S. Naderizadeh, N. Rahimi, Electronic and magnetic properties of Fe, Co and Ni atomic chains encapsulated in BN nanotube bundle. Comput. Theor. Chem. 979, 10–16 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D. Golberg, Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew. Chem. Int. Ed. 44, 7932–7935 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Bahrami, M.B. Qarai, N.L. Hadipour, The electronic and structural responses of B12N12 nanocage toward the adsorption of some nonpolar X2 molecules: X=(Li, Be, B, N, O, F. Cl, Br, I): a DFT approach, Comput Theor Chem. 1108, 63–69 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Zhi, Y. Bando, C. Tang, Q. Huang, D. Golberg, Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 18, 3900–3908 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Beheshtian, A.A. Peyghan, M.B. Tabar, Z. Bagheri, DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187 (2013)CrossRefGoogle Scholar
  20. 20.
    C.H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y.K. Yap, Boron nitride nanotubes: recent advances in their synthesis, functionalization, and applications. Molecules 21, 922 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Danti, G. Ciofani, S. Moscato, D. D’Alessandro, E. Ciabatti, C. Nesti, R. Brescia, G. Bertoni, A. Pietrabissa, M. Lisanti, Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 24, 465102 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Pal, S. Vivekchand, A. Govindaraj, C. Rao, Functionalization and solubilization of BN nanotubes by interaction with Lewis bases. J. Mater. Chem. 17, 450–452 (2007)CrossRefGoogle Scholar
  23. 23.
    E.R. Pérez, R.H. Santos, M.T. Gambardella, L.G. De Macedo, U.P. Rodrigues-Filho, J.-C. Launay, D.W. Franco, Activation of carbon dioxide by bicyclic amidines. J. Org. Chem. 69, 8005–8011 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Schmidt et al., General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)CrossRefGoogle Scholar
  25. 25.
    D. Hossain, C.U. Pittman, S.R. Gwaltney, Structures and stabilities of the metal doped gold nano-clusters: M@Au10 (M = W, Mo, Ru, Co). J. Inorg. Organomet. Polym. Mater. 24, 241–249 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Mashhadban, A.S. Ghasemi, F. Ravari, The Effects of Zn doping on the interaction of a single walled carbon nanotube with penicillamine drug: a DFT study. J. Inorg. Organomet. Polym. Mater. 28, 954–961 (2018)CrossRefGoogle Scholar
  27. 27.
    G.W. Waldhart, A.J. Webster, B.M. Schreiber, R.B. Siedschlag, J.S. D’Acchioli, The curious case of the allyl ligand: a study in applying the 18-electron rule. J. Inorg. Organomet. Polym. Mater. 24, 87–94 (2014)CrossRefGoogle Scholar
  28. 28.
    K.M. Eid, H.Y. Ammr, Adsorption of SO2 on Li atoms deposited on MgO (1 0 0) surface: DFT calculations. Appl. Surf. Sci. 257, 6049–6058 (2011)CrossRefGoogle Scholar
  29. 29.
    I.K. Petrushenko, K.B. Petrushenko, Physical adsorption of N-containing heterocycles on graphene-like boron nitride-carbon heterostructures: a DFT study. Comput. Theor. Chem. 1117, 162–168 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Tomić, B. Montanari, N.M. Harrison, The group III–V’s semi-conductor energy gaps predicted using the B3LYP hybrid functional. Physica E 40, 2125–2127 (2008)CrossRefGoogle Scholar
  31. 31.
    T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104–113 (1933)CrossRefGoogle Scholar
  32. 32.
    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Chen, Y. Li, G. Yu, Z. Zhou, Z. Chen, Electronic structure and reactivity of boron nitride nanoribbons with stone-wales defects. J. Chem. Theory Comput. 5, 3088–3095 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Li, Z. Zhou, D. Golberg, Y. Bando, P.V.R. Schleyer, Z. Chen, Stone—wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Aihara, Reduced HOMO – LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999)CrossRefGoogle Scholar
  36. 36.
    C. Hansch, A. Leo, R. Taft, A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991)CrossRefGoogle Scholar
  37. 37.
    B. Mennucci, Polarizable continuum model. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 386–404 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations