Advertisement

Multifunctional CuO Nanosheets for High-Performance Supercapacitor Electrodes with Enhanced Photocatalytic Activity

  • Narender Budhiraja
  • Sapna
  • Vinod Kumar
  • Monika Tomar
  • Vinay Gupta
  • S. K. Singh
Article
  • 14 Downloads

Abstract

This paper reports the facile hydrothermal approach to synthesize porous CuO nanosheets. Their crystalline phase, metallic vibrations, topography, morphology, pore size distribution and magnetic behavior has been studied in detail. Magnetic properties of nanosheets were studied at 300 K using vibrating sample magnetometer which indicates the superparamagnetic behavior with saturation magnetization of 2.46 emu g−1 for as prepared 2D nanostructures. The electrochemical spectroscopy of these sheets reveals that as prepared sheets have a specific capacitance of 1057 F g−1 at a current density of 2 A g−1 which is retained up to 93% even after 4000 cycles. Furthermore, photocatalytic activity along with electrochemical properties of the as-obtained nanostructures were studied for various organic dyes. The high value of saturation magnetization, high specific capacitance and better dye degradation properties of the developed CuO nanosheets make the developed materials good for application in energy storage devices, astonishing electrode material and photocatalyst for degradation of organic dyes in visible light.

Keywords

Nanostructures Electrochemical measurements Magnetic properties Energy storage 

Notes

Acknowledgements

The authors, Narender Budhiraja and Sapna are thankful to DST-Haryana for their financial support as SRF under RETC project at Department of Physics, DCRUST, Murthal, India and very grateful to Prof. O.P. Pandey, Head, School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala for VSM characterization.

References

  1. 1.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRefPubMedCentralGoogle Scholar
  2. 2.
    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Flower-shaped CuO nanostructures: structural, photocatalytic and XANES studies. Catal. Commun. 10, 11–16 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuators B 134, 761–768 (2008)CrossRefGoogle Scholar
  4. 4.
    O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas, F. Schütt, Y.K. Mishra, E. Monaico, I. Tiginyanu, V. Sontea, T. Strunskus, F. Faupel, R. Adelung, Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sens. Actuators B 224, 434–448 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater. Res. Bull. 48, 3136–3139 (2013)CrossRefGoogle Scholar
  6. 6.
    S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitor. RSC Adv. 5, 4443–4447 (2014)Google Scholar
  7. 7.
    M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Structural, electrical and optical properties of ZnO nanoparticle: combined experimental and theoretical study. Appl. Phys. A 124, 518 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B 144, 220–225 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167–175 (2018)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, J. Feng, M. Zhang, Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Mater. Res. Bull. 43, 3221–3226 (2008)CrossRefGoogle Scholar
  11. 11.
    S.C. Bhise, D.V. Awale, M.M. Vadiyar, S.K. Patil, B.N. Kokare, S.S. Kolekar, Facile synthesis of CuO nanosheets as electrode for supercapacitor with long cyclic stability in novel methyl imidazole-based. J. Solid State Electrochem. (2017).  https://doi.org/10.1007/s10008-016-3490-2 CrossRefGoogle Scholar
  12. 12.
    Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, J. Yang, Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J. Phys. Chem. C 116, 11994–12000 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Yin, S. Zhang, Y. Jiao, Y. Liu, F. Qu, X. Wu, Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm 16, 9999–10005 (2014).Google Scholar
  15. 15.
    G.J. Navathe, D.S. Patil, P.R. Jadhav, D.V. Awale, A.M. Teli, S.C. Bhise, S.S. Kolekar, M.M. Karanjkar, J.H. Kim, P.S. Patil, Rapid synthesis of nanostructured copper oxide for electrochemical supercapacitor based on novel [HPMIM][Cl] ionic liquid. J. Electroanal. Chem. 738, 170–175 (2015)CrossRefGoogle Scholar
  16. 16.
    S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851–4860 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.X. Zhang, M. Huang, F. Li, Z.Q. Wen, Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int. J. Electrochem. Sci. 8, 8645–8661 (2013)Google Scholar
  18. 18.
    Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan et al., Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. ACS Appl. Mater. Interfaces 7, 9682–9690 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Ghribi, L. El Mir, K. Omri, K. Djessas, Sputtered ZnS thin film from nanoparticles synthesized by hydrothermal route. Optik 127, 3688–3692 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Zhao, R. Liu, Z. Hua, Hydrothermal synthesis and optical properties of single crystalline CuO nanosheets. Superlattices Microstruct. 81, 243–247 (2015)CrossRefGoogle Scholar
  21. 21.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRefGoogle Scholar
  22. 22.
    N. Budhiraja, Sapna, V. Kumar, M. Tomar, V. Gupta, S.K. Singh, Facile synthesis of porous CuO nanosheets as high-performance NO2 gas sensor. Integr. Ferroelectr. (2018).  https://doi.org/10.1080/10584587.2018.1514884 CrossRefGoogle Scholar
  23. 23.
    S.N. Narang, V.B. Kartha, N.D. Patel, Fourier transform infrared spectra and normal vibrations of CuO. Physica C 204, 8–14 (1992)CrossRefGoogle Scholar
  24. 24.
    K. Kannaki, P.S. Ramesh, D. Geetha, Hydrothermal synthesis of CuO nanostructure and their characterizations. Int. J. Sci. Eng. Res. 3, 1–4 (2012)Google Scholar
  25. 25.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Synergistic effect in structural and supercapacitor performance of well dispersed CoFe2O4/Co3O4 nano-hetrostructures. Ceram. Int. 44, 13806–13814 (2018)CrossRefGoogle Scholar
  26. 26.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.S. Pierotti, J. Rouquerol, T. Siemieniewska, international union of pure commission on colloid and surface chemistry including catalysis-Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  27. 27.
    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind. Eng. Chem. Res. 51, 11700–11709 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Slama, J. Ghoul, I. El Ghiloufi, K. Omri, L. El Mir, Synthesis and physico-chemical studies of vanadiumdoped zinc oxide nanoparticles and its photocatalysis. J. Mater. Sci.: Mater. Electron. 27, 8146–8153 (2016)Google Scholar
  29. 29.
    S.D. Balgude, Y.A. Sethi, B.B. Kale, N.R. Munirathnam, D.P. Amalnerkar, P.V. Adhyapak, Nanostructured layered Sn3O4 for hydrogen production and dye degradation under sunlight. RSC Adv. 6, 95663–95669 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater. Sci. Semicond. Process. 30, 585–591 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Bhattacharjee, M. Ahmaruzzaman, CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Adv. 6, 41348–41363 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Liu, J. Jin, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, L.H. Chen, Y. Li, G. Van Tendeloo, B.L. Su, Tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 384, 1–9 (2012)CrossRefPubMedCentralGoogle Scholar
  33. 33.
    R. Slama, J. EL Ghoul, K. Omri, A. Houas, L. El Mir, F. Launay, Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by sol gel method. J. Mater. Sci.: Mater. Electron. 27, 7939–7946 (2016)Google Scholar
  34. 34.
    X. Niu, T. Zhao, F. Yuan, Y. Zhu, Preparation of hollow CuO@SiO2 spheres and its catalytic performances for the NO + CO and CO oxidation. Sci. Rep. 5, 9153 (2015)CrossRefPubMedCentralGoogle Scholar
  35. 35.
    A. Sharma, R.K. Dutta, A. Roychowdhury, D. Das, A. Goyal, A. Kapoor, Cobalt doped CuO nanoparticles as high efficient heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. A 543, 257–265 (2017)CrossRefGoogle Scholar
  36. 36.
    R. Al-Gaashani, S. Radiman, N. Tabet, A. Razak Daud, Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method. J. Alloys Compd. 509, 8761–8769 (2011)CrossRefGoogle Scholar
  37. 37.
    N.H. Hong, J. Sakai, F. Gervais, Magnetism due tooxygen vaccancies and/or defects in undoped semiconducting and insulating oxide thin films. J. Magn. Magn. Mater. 316, 214–217 (2007)CrossRefGoogle Scholar
  38. 38.
    G.N. Rao, Y.D. Yao, J.W. Chen, Evolution of size,morphology, and magnetic properties of CuO nanoparticles by thermal annealing. J. Appl. Phys. 105, 093901–093906 (2009)CrossRefGoogle Scholar
  39. 39.
    D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Vacany mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 5, 769–772 (2010)CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Tailoring the sttructural, optical, magnetic properties of NiFe2O4 by varying annealing temperature. J. Supercond. Novel Magn. 31, 2647–2654 (2018)CrossRefGoogle Scholar
  41. 41.
    I. Singh, K. Landfester, A. Chandra, R.M. Espi, A new approach for crystallization of copper (II) oxide hollow nanostructures with superior catalytic and magnetic response. Nanoscale 7, 19250–19258 (2015)CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Narender Budhiraja
    • 1
  • Sapna
    • 1
  • Vinod Kumar
    • 1
  • Monika Tomar
    • 2
  • Vinay Gupta
    • 3
  • S. K. Singh
    • 1
  1. 1.Department. of PhysicsDCR University of Science & TechnologyMurthalIndia
  2. 2.Physics Department, Miranda HouseUniversity of DelhiNew DelhiIndia
  3. 3.Department of Physics & AstrophysicsUniversity of DelhiNew DelhiIndia

Personalised recommendations