Fabrication of Polyaniline–La2O3 Composite Nanofibers Showing Effective Control of Morphology, Electrical Conductivity, and Thermal Stability

  • Mohammad Mizanur Rahman KhanEmail author
  • Nurfarahhana Binti Daud
  • Mohammad Shahadat Hussain Chowdhury
  • Wan Ahmad Kamil Mahmood
  • Hisatoshi Kobayashi


Polyaniline (PANI) modified La2O3 composites were successfully prepared by progressively varying the loading of La2O3 (0.005–1.00 g). The diameter of PANI nanofibers was varied and remained in the range of 33–53 nm with the variation of La2O3 loading. TEM images revealed that PANI surface was wrapped by the La2O3 particle. The conductivity of PANI–La2O3 composite nanofibers was greater than PANI. Nevertheless, the value was almost similar for 0.25 g loading and was provided inconsistent conductivity for the highest two loadings (0.50 g and 1.00 g of La2O3). Highest conductivity of 3.484 S cm−1 was identified for the lowest addition of La2O3 (0.005 g). TGA data revealed the greater thermal stability of PANI–La2O3 composite nanofibers as compared to PANI, except for lowest and highest loaded samples which were a bit less thermally stable. The aforementioned results suggested that PANI–La2O3 composites might be a promising material for biological and semiconductor device applications.


Polyaniline–La2O3 composites Nanofiber Morphology Electrical conductivity Thermal stability 



We wish to express our gratitude to the School of Chemical Science, Universiti Sains Malaysia (USM) for providing the instrumental facilities. M. M. Rahman Khan acknowledges TWAS and USM for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    D.W. Hatchett, M. Josowicz, Chem. Rev. 108, 746 (2008)CrossRefGoogle Scholar
  2. 2.
    N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. 32, 876 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, S. Tang, S. Vongehr, J.A. Syed, X. Wang, X. Meng, Scient. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Wang, H. Huang, S.H. Xiao, D.P. Cai, Y. Liu, ACS. Appl. Mater. Interfac. 6, 14131 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Qiao, S.J. Bao, C.M. Li, X.Q. Cui, Z.S. Lu, J. Guo, ACS Nano. 2, 113 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, G. Madras, Electrochim. Acta 54, 1249 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Hung, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003)CrossRefGoogle Scholar
  8. 8.
    D.S. Suatar, N. Padma, D.K.H. Aswal, Sens. Actuat. B. 128, 286 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Li, Z. Zhang, Macromolecules. 37, 2683 (2004)CrossRefGoogle Scholar
  10. 10.
    J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004)CrossRefGoogle Scholar
  11. 11.
    N. Mokhtar, D.A.T. Chye, S.W. Phang, Polym. Polym. Compos. 25, 545 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Xia, Q. Wang, Chem. Mater 14, 2158 (2002)CrossRefGoogle Scholar
  13. 13.
    Y. He, Appl. Surf. Sci. 249, 1 (2005)CrossRefGoogle Scholar
  14. 14.
    J.-E. Park, S.-G. Park, A. Koukitu, O. Hatozaki, N. Oyama, Synth. Metal. 141, 265 (2004)CrossRefGoogle Scholar
  15. 15.
    T.K. Sarma, A. Chattopadhyay, Langmuir. 20, 4733 (2004)CrossRefGoogle Scholar
  16. 16.
    S.I.A. Razak, S.H.S. Zein, A.L. Ahmad, Nano. 6, 81 (2011)CrossRefGoogle Scholar
  17. 17.
    M.M. Rahman Khan, Y.K. Wee, W.A.K. Mahmood, Synth. Metal. 162, 1065 (2012)CrossRefGoogle Scholar
  18. 18.
    C.M. Yang, C.Y. Chen, Synth. Metal. 153, 133 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Jiang, S. Zhu, Z. Zhou, A. Zhao, J. Lu, J. Appl. Polym. Sci. 121, 3439 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 11, 1158 (2009)CrossRefGoogle Scholar
  21. 21.
    W.E. Mahmoud, A.A. Al-Ghamdia, Polym. Adv. Technol. 22, 877 (2011)CrossRefGoogle Scholar
  22. 22.
    G.L. Teoh, K.Y. Liew, W.A.K. Mahmood, Mater. Lett. 61, 4947 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Kundu, B. Satpati, M. Mukherjee, T. Kar, S.K. Pradhan, New J. Chem. 41, 3634 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Kowsari, G. Faraghi, Ultrason. Sonochem. 17, 718 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshim, H. Ishiwara, H. Iwai, J. Electrochem. Soc. 150, F134 (2003)CrossRefGoogle Scholar
  26. 26.
    F.-C. Chiu, H.-W. Chou, J.Y. Lee, J. Appl. Phys. 97, 103503 (2005)CrossRefGoogle Scholar
  27. 27.
    B.-K. Jang, S. Kim, Y.-S. Oh, H.-T. Kim, Y. Sakka, H. Murakami, J. Ceram. Soc. Jpn. 119, 929 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Fornarini, J.C. Conde, C. Alvani, D. Olevano, S. Chiussi, Thin Solid Films 516, 7400 (2008)CrossRefGoogle Scholar
  29. 29.
    G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, J. Appl. Phys. 103, 014506 (2008)CrossRefGoogle Scholar
  30. 30.
    L. Zhang, Y. Gao, M. Li, J. Liu, Environ. Technol. 36, 1016 (2015)CrossRefGoogle Scholar
  31. 31.
    B. Balusamy, Y.G. Kandhasamy, A. Senthamizhan, G. Chandrasekaran, M.S. Subramanian, T.S. Kumaravel, J. Rare Earth 30, 1298 (2012)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, L. Wan, N. Chang, J. Liu, C. Duan, Q. Zhou, X. Li, X. Wang, J. Hazard. Mater. 190, 848 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Wang, Z. Sun, Y.-F. Wen, D.-M. Yang, Acta Chimi. Sinica. 65, 2793 (2007)Google Scholar
  34. 34.
    A. Rahy, M. Sakrout, S. Manohar, S.J. Cho, J. Ferrari, D. Yang, Chem. Mater. 20, 4808 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Pathan, K.R. Desai, S. Vajapara, C.P. Bhasin, Adv. Nanoparticle. 7, 28 (2018)CrossRefGoogle Scholar
  36. 36.
    J.M.H.A. Kurdhani, H. Wang, X. Zhou, Chem. Mater. Res. 10, 51 (2018)Google Scholar
  37. 37.
    M. Alam, A.A. Ansari, M.R. Shaik, M.N. Alandis, Arab. J. Chem. 6, 341 (2013)CrossRefGoogle Scholar
  38. 38.
    E. Ays, G. Yavuz, E.U. Gok, Synth. Metal. 157, 235 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Dhanavel, E.A.K. Nivethaa, K. Dhanapal, V.K. Gupta, V. Narayanan, A. Stephen, RSC Adv. 6, 28871 (2016)CrossRefGoogle Scholar
  40. 40.
    Y. Guo, D. He, S. Xia, X. Xin, X. Gao, Q. Zang, J. Nanomater. 2012, 1 (2012)CrossRefGoogle Scholar
  41. 41.
    S.-J. Su, N. Kuramoto, Synth. Metal. 114, 147 (2000)CrossRefGoogle Scholar
  42. 42.
    S. Khasim, S. Raghavendra, M. Revanasiddappa, K. Sajjian, K.M. Lakshmi, M. Faisal, Bull. Mater. Sci. 34, 1557 (2011)CrossRefGoogle Scholar
  43. 43.
    F.A. Rafiqi, K. Majid, Chem. Paper. 69, 1331 (2015)CrossRefGoogle Scholar
  44. 44.
    M.M. Rahman Khan, Y.K. Wee, S.U. Ahmed, M. Naher, M. Younus, W.A.K. Mahmood, Int. J. Chem. React. Eng. 16, 1 (2017)Google Scholar
  45. 45.
    R. Ansari, M.B. Keivani, E. J. Chem. 3, 202 (2006)Google Scholar
  46. 46.
    S. Wang, Z. Tan, Y. Li, L. Sun, T. Zhang, Thermochim. Acta 441, 191 (2006)CrossRefGoogle Scholar
  47. 47.
    W. Wang, Q. Li, Y. Li, H. Xu, J. Zhai, J. Phys. D Appl. Phys. 42, 215306 (2009)CrossRefGoogle Scholar
  48. 48.
    Y.-N. Qi, F. Xu, H.-J. Ma, L.-X. Sun, J. Zhang, T. Jiang, J. Therm. Anal. Calorim. 91, 219 (2008)CrossRefGoogle Scholar
  49. 49.
    M.R. Nabid, M. Golbabaee, A.B. Moghaddam, R. Dinarvand, R. Sedghi, Int. J. Electrochem. Sci. 3, 1117 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaMindenMalaysia
  2. 2.Department of ChemistryShahjalal University of Science and TechnologySylhetBangladesh
  3. 3.International Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations