BiVO4(010)/rGO Nanocomposite and Its Photocatalysis Application

  • Lianwei ShanEmail author
  • Jingjing Bi
  • Changhui Lu
  • Yanwei Xiao


By interfacial coupling effect, the reduced graphene oxide (rGO) was constructed on (010) facet of BiVO4, which is a characteristic of the dominant separation of photogenerated electrons. The prepared samples were characterized by X-ray diffractometry and Raman spectra, which indicating that the added rGO plays an important role in regulating of V–O bond. By the X-ray photoelectron spectroscopy, it was found that the valence band value of BGO180 is increased compared with BiVO4, suggesting that there is an effective coupling present between rGO and BiVO4. Under simulated sunlight, the photocatalytic properties of BiVO4/rGO nanocomposite are evaluated by the O2 evolution. The carrier transfer effect between BiVO4 and newly formed coupling layer (BiVO4 and rGO) explains the excellent photoactivity of nanocomposite.


BiVO4 rGO Photocatalytic activity 



The authors gratefully acknowledge financial supports from the Education Department Program of Heilongjiang Province (12541111) and Postdoctoral Scientific Developmental Fund of Heilongjiang Province (LBH-Q16122).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing financial interest.


  1. 1.
    L.W. Shan, G.L. Wang, L.Z. Liu, Z. Wu, J. Mol. Catal. A 406, 145–151 (2015)CrossRefGoogle Scholar
  2. 2.
    Z.G. Xiong, X.S. Zhao, J. Am. Chem. Soc. 134, 5754–5757 (2012)CrossRefGoogle Scholar
  3. 3.
    L.W. Shan, G.L. Wang, D. Li, X.Y. San, L.Z. Liu, L.M. Dong, Z. Wu, Dalton Trans. 44, 7835–7843 (2015)CrossRefGoogle Scholar
  4. 4.
    C.M. Huang, G.T. Pan, P.Y. Peng, T.C.K. Yang, J. Mol. Catal. A 327, 38–44 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.N. Zhang, H.Q. Fan, M.M. Li, H.L. Tian, Dalton Trans. 42, 13172–13178 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Chatchai, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 94, 314–319 (2013)CrossRefGoogle Scholar
  7. 7.
    M.Z. Xie, Z.M. Zhang, W.H. Han, X.W. Cheng, X. Li, E.Q. Xie, J. Mater. Chem. A 5, 10338–10346 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Yan, Y.L. Wu, Y. Yan, X. Yan, F.F. Zhu, Y.Q. Hua, W.D. Shi, ACS Sustain. Chem. Eng. 4, 757–766 (2015)Google Scholar
  9. 9.
    W.H. Nam, B.B. Kim, S.G. Seo, Y.S. Lim, J.Y. Kim, W.S. Seo, W.K. Choi, H.H. Park, J.Y. Lee, Nano Lett. 14, 5104–5109 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Hayashi, I.V. Lightcap, M. Tsujimoto, M. Takano, T. Umeyama, P.V. Kamat, H. Imahori, J. Am. Chem. Soc. 133, 7684–7687 (2011)CrossRefGoogle Scholar
  11. 11.
    N. Song, H.Q. Fan, H.L. Tian, J. Mater. Sci. 50, 2229–2238 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, J.G. Yu, M. Jaroniec, J.R. Gong, Nano Lett. 12, 4584–4589 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054–11057 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1, 2607–2612 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, B. Chen, M.K. Baek, K.J. Yong, ACS Appl. Mater. Interfaces 10, 6218–6227 (2018)CrossRefGoogle Scholar
  17. 17.
    H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Chem. Soc. Rev. 43, 5234–5244 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Mondal, S. Sudhu, S. Bhattacharya, S.K. Saha, J. Phys. Chem. C 119, 27749–27758 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Kang, R.C. Pawar, Y. Pyo, V. Khare, C.S. Lee, J. Exp. Nanosci. 11, 259–275 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Bai, J. Ge, L. Wang, M. Gong, M. Deng, Q. Kong, L. Song, J. Jiang, Q. Zhang, Y. Luo, Y. Xie, Y. Xiong, Adv. Mater. 26, 5689–5695 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, Nano Lett. 12, 6464–6473 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B 234, 37–49 (2018)CrossRefGoogle Scholar
  23. 23.
    M.W. Shao, S.J. Zhuo, Acs Nano 6, 6532–6532 (2012)CrossRefGoogle Scholar
  24. 24.
    D.Z. Tan, S.F. Zhou, J.R. Qiu, Acs Nano 6, 6530–6531 (2012)CrossRefGoogle Scholar
  25. 25.
    Z.X. Gan, X.L. Wu, M. Meng, X.B. Zhu, L. Yang, P.K. Chu, ACS Nano 8, 9304–9310 (2014)CrossRefGoogle Scholar
  26. 26.
    D.K. Zhong, S. Choi, D.R. Gamelin, J. Am. Chem. Soc. 133, 18370–18377 (2011)CrossRefGoogle Scholar
  27. 27.
    T.W. Kim, K.S. Choi, Science 343, 990–994 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Tang, H.C. Zhang, H. Huang, R.H. Liu, Y.Z. Han, Y. Liu, C.Y. Tong, Z.H. Kang, Dalton Trans. 42, 6285–6289 (2013)CrossRefGoogle Scholar
  29. 29.
    W.J. Fang, Z. Jiang, L. Yu, H. Liu, W.F. Shangguan, C. Terashima, A. Fujishima, J. Catal. 352, 155–159 (2017)CrossRefGoogle Scholar
  30. 30.
    J.Q. Li, Z.Y. Guo, H. Liu, J. Du, Z.F. Zhu, J. Alloys Compds. 581, 40–45 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Wang, Y.S. Che, C. Niu, M.Y. Dang, D. Dong, J. Rare Earths 31, 878–884 (2013)CrossRefGoogle Scholar
  32. 32.
    L.W. Shan, G.L. Wang, J. Suriyaprakash, D. Li, L.Z. Liu, L.M. Dong, J. Alloys Compds. 636, 131–137 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Sandhya Kumari, P. Prabhakar Rao, A. Narayana Pillai Radhakrishnan, V. James, S. Sameera, P. Koshy, Sol. Energy Mater. Sol. C 112, 134–143 (2013)CrossRefGoogle Scholar
  34. 34.
    L.W. Shan, H.G. Liu, G.L. Wang, J. Nanopart. Res. 17, 181 (2015)CrossRefGoogle Scholar
  35. 35.
    L.W. Shan, J.B. Mi, L.M. Dong, Z.D. Han, B. Liu, Chin. J. Chem. Eng. 22, 909–913 (2014)CrossRefGoogle Scholar
  36. 36.
    L.W. Shan, Y.T. Liu, J. Suriyaprakash, C.G. Ma, Z. Wu, L.M. Dong, L.L. Zhu, J. Mol. Catal. A 411, 179–187 (2016)CrossRefGoogle Scholar
  37. 37.
    R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 4, 1432–1438 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13, 4624–4628 (2001)CrossRefGoogle Scholar
  39. 39.
    K.E. Kweon, G.S. Hwang, Phys. Rev. B 87, 205202 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Zhou, J. Bao, Y. Xu, J.J. Zhang, J.F. Xie, M.L. Guan, C.L. Wang, L.Y. Wen, Y. Lei, Y. Xie, ACS Nano 8, 7088–7098 (2014)CrossRefGoogle Scholar
  41. 41.
    Y.Z. Wang, W. Wang, H.Y. Mao, Y.H. Lu, J.G. Lu, J.Y. Huang, Z.Z. Ye, B. Lu, ACS Appl. Mater. Interfaces 6, 12698–12706 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627–637 (1966)CrossRefGoogle Scholar
  43. 43.
    H.Y. Jiang, X. Meng, H.X. Dai, J.G. Deng, Y.X. Liu, L. Zhang, Z.X. Zhao, R.Z. Zhang, J. Hazard. Mater. 217–218, 92–99 (2012)CrossRefGoogle Scholar
  44. 44.
    W. Liu, Y. Yu, L. Cao, G. Su, X. Liu, L. Zhang, Y. Wang, J. Hazard. Mater. 181, 1102–1108 (2010)CrossRefGoogle Scholar
  45. 45.
    Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)CrossRefGoogle Scholar
  46. 46.
    L.W. Shan, Y.T. Liu, H.T. Chen, Z. Wu, Z.D. Han, Dalton Trans. 46, 2310–2321 (2017)CrossRefGoogle Scholar
  47. 47.
    F.D. Gao, D.W. Zeng, Q.W. Huang, S.Q. Tian, C.S. Xie, Phys. Chem. Chem. Phys. 14, 10572–10578 (2012)CrossRefGoogle Scholar
  48. 48.
    S.J. Zhuo, M.W. Shao, S.T. Lee, Acs Nano 6, 1059–1064 (2012)CrossRefGoogle Scholar
  49. 49.
    L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, J. Phys. Chem. B 110, 17860–17865 (2006)CrossRefGoogle Scholar
  50. 50.
    S. Guo, X.F. Li, H.Q. Wang, F. Dong, Z.B. Wu, J. Colloid Interface Sci. 369, 373–380 (2012)CrossRefGoogle Scholar
  51. 51.
    W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Environ. Sci. Technol. 46, 4599–4606 (2012)CrossRefGoogle Scholar
  52. 52.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782–796 (2012)CrossRefGoogle Scholar
  53. 53.
    Y. Zhao, R.G. Li, L.C. Mu, C. Li, Cryst. Growth Des. 17, 2923–2928 (2017)CrossRefGoogle Scholar
  54. 54.
    H.L. Tan, X.M. Wen, R. Amal, Y.H. Ng, J. Phys. Chem. Lett. 7, 1400–1405 (2016)CrossRefGoogle Scholar
  55. 55.
    T. Tachikawa, T. Ochi, Y. Kobori, ACS Catal. 6, 2250–2256 (2016)CrossRefGoogle Scholar
  56. 56.
    P. Chatchai, Y. Murakami, S. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54, 1147–1152 (2009)CrossRefGoogle Scholar
  57. 57.
    K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang, J.S. Lee, ChemSusChem 5, 1926–1934 (2012)CrossRefGoogle Scholar
  58. 58.
    J.E.B. Randles, Discuss. Faraday Soc. 1, 11–19 (1947)CrossRefGoogle Scholar
  59. 59.
    W.J. Jo, J.W. Jang, K.J. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar, J.S. Lee, Angew. Chem. Int. Ed. 124, 3201–3205 (2012)CrossRefGoogle Scholar
  60. 60.
    M.K. Kavitha, H. John, P. Gopinath, R. Philip, J. Mater. Chem. C 1, 3669–3676 (2013)CrossRefGoogle Scholar
  61. 61.
    T. Wang, C.J. Li, J.Y. Ji, Y.J. Wei, P. Zhang, S.P. Wang, X.B. Fan, J.L. Gong, ACS Sustain. Chem. Eng. 2, 2253–2258 (2014)CrossRefGoogle Scholar
  62. 62.
    Z.G. Xiong, H. Wu, L.H. Zhang, Y. Gu, X.S. Zhao, J. Mater. Chem. A 2, 9291–9297 (2014)CrossRefGoogle Scholar
  63. 63.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  64. 64.
    Z.Q. He, Y.Q. Shi, C. Gao, L.N. Wen, J.M. Chen, S. Song, J. Phys. Chem. C 118, 389–398 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations