Rapid Room-Temperature Synthesis of Gold Nanoparticles Using Sargentgloryvine Stem Extract and Their Photocatalytic Activity

  • Li SunEmail author
  • Haonan Li
  • Pengcheng Lv
  • Jian Chen


Gold nanoparticles (Au NPs) were rapidly synthesized in the Sargentgloryvine stem (Ss) extract without the addition of any chemical agent at room temperature. The synthesis time was less than 10 min (even 1.5 min). The reducing and capping properties of the Ss extract were systematically investigated and then the controllable synthesis of Au NPs was achieved based on UV–Vis spectra. Au NPs were further characterized by transmission electron microscopy, selected area electron diffraction, X-ray diffraction and energy-dispersive X-ray spectroscopy analyses. It could be found Au NPs were quasi-spherical with an average size of 15.6 nm and a face-centered cubic crystalline structure. As-obtained Au NPs was used as photocatalysts for the degradation of nitro compounds (2-, 3-, 4-nitrophenol and 2-nitroresorcinol) and exhibited remarkable photocatalytic activity and stability. The rate constants (K) of nitro compounds degradation followed the order: K4-NP > K2-NP > K3-NP > K2-NR. The difference of the rate constants could be caused by the substituent effect originated from different molecular structures of nitro compounds. The rate constant for the 4-nitrophenol degradation could be linearly adjusted by the molar concentration of Au NPs in the degradation system, which is favorable to the practical wastewater treatment.

Graphical Abstract


Gold nanoparticles Rapid room-temperature synthesis Sargentgloryvine stem Nitro compounds Photocatalysis 



The authors appreciate the financial support of the National Natural Science Foundation of China (No. 11404210).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10904_2018_985_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1190 KB)


  1. 1.
    C. Umamaheswari, A. Lakshmanan, N.S. Nagarajan, J. Photochem. Photobiol. B 178, 33 (2018)CrossRefGoogle Scholar
  2. 2.
    S.E. Kudaibergenov, G.S. Tatykhanova, B.S. Selenova, J. Inorg. Organomet. Polym. 26, 1198 (2016)CrossRefGoogle Scholar
  3. 3.
    C.P. Zhai, X.J. Liu, X. Chen, L.N. Li, F. Sun, H.T. Ma, J. Inorg. Organomet. Polym. 25, 687 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Qian, C.F. Yu, S.S. Wu, J. Shen, Colloids Surf. B 112, 310 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Tahir, S. Nazir, B.S. Li, A.U. Khan, Z.U.H. Khan, P.Y. Gong, S.U. Khan, A. Ahmad, Mater. Lett. 156, 198 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Anandan, H.G. Prabu, J. Inorg. Organomet. Polym. 28, 932 (2018)CrossRefGoogle Scholar
  7. 7.
    B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, J. Photochem. Photobiol. B 154, 1 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Coman, L.F. Leopold, O.D. Rugină, L. Barbu-Tudoran, N. Leopold, M. Tofana˘, C. Socaciu, J. Nanopart. Res. 16, 2158 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Palazzo, G. Valenza, M. Dell’Aglio, A.D. Giacomo, J. Colloid Interface Sci. 489, 47 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Soliwoda, M. Rosowski, E. Tomaszewska, B. Tkacz-Szczesna, G. Celichowski, M. Psarski, J. Grobelny, Colloid Surf. A 482, 148 (2015)CrossRefGoogle Scholar
  11. 11.
    J.L. Zha, C.F. Dong, X.J. Wang, X.L. Zhang, X.H. Xiao, X.Z. Yang, Optik 144, 511 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Balalakshmi, K. Gopinath, M. Govindarajan, R. Lokesh, A. Arumugam, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, G. Benelli, J. Photochem. Photobiol. B 173, 598 (2017)CrossRefGoogle Scholar
  13. 13.
    J.K. Patra, Y. Kwon, K.H. Baek, Adv. Powder Technol. 27, 2204 (2016)CrossRefGoogle Scholar
  14. 14.
    J.R. Nakkala, R. Mata, S.R. Sadras, Process Saf. Environ. 100, 288 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Jafarizad, K. Safaee, D. Ekinci, J. Clust. Sci. 28, 2765 (2017)CrossRefGoogle Scholar
  16. 16.
    M.X. Guo, W. Li, F. Yang, H.H. Liu, Spectrochim. Acta A 142, 73 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Zarzuela, M.J. Luna, M.L.A. Gil, M.J. Ortega, J.M. Palacios-Santander, I. Naranjo-Rodríguez, J.J. Delgado, L.M. Cubillana-Aguilera, J. Photochem. Photobiol. B 179, 32 (2018)CrossRefGoogle Scholar
  18. 18.
    B. Sadeghi, M. Mohammadzadeh, B. Babakhani, J. Photochem. Photobiol. B 148, 101 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Tamuly, M. Hazarika, M. Bordoloi, Mater. Lett. 108, 276 (2013)CrossRefGoogle Scholar
  20. 20.
    N.Y. Polyakova, A.Y. Polyakov, I.V. Sukhorukova, D.V. Shtansky, A.V. Grigorieva, Gold Bull. 50, 131 (2017)CrossRefGoogle Scholar
  21. 21.
    S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496 (2004)CrossRefGoogle Scholar
  22. 22.
    D. Philip, C. Unni, S.A. Aromal, V.K. Vidhu, Spectrochim. Acta A 78, 899 (2011)CrossRefGoogle Scholar
  23. 23.
    M.R. Bindhu, M. Umadevi, Mater. Lett. 120, 122 (2014)CrossRefGoogle Scholar
  24. 24.
    H.J. Chen, Y.L. Wang, Y.Z. Wang, S.J. Dong, E. Wang, Polymer 47, 763 (2006)CrossRefGoogle Scholar
  25. 25.
    J.H. Yang, Y. Li, L.H. Zu, L.M. Tong, G.L. Liu, Y. Qin, D.L. Shi, ACS Appl. Mater. Interfaces 7, 8200 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Afsari, A.A. Youzbashi, H. Nuranian, S.M. Zahraee, Mater. Res. Bull. 94, 15 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Fkiri, A. Mezni, L.S. Smiri, J. Inorg. Organomet. Polym. 28, 27 (2018)CrossRefGoogle Scholar
  28. 28.
    Z.I. Ali, O.A. Ghazy, G. Meligi, H.H. Saleh, M. Bekhit, J. Inorg. Organomet. Polym. 28, 1195 (2018)CrossRefGoogle Scholar
  29. 29.
    G.F. Dang, Y. Shi, Z.F. Fu, W.T. Yang, Chin. J. Catal. 33, 651 (2012)CrossRefGoogle Scholar
  30. 30.
    W.L. Shen, Y.Y. Qu, X.F. Pei, X.W. Zhang, Q. Ma, Z.J. Zhang, S.Z. Li, J.T. Zhou, Biotechnol. Lett. 38, 1503 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Meena Kumari, J. Jacob, D. Philip, Spectrochim. Acta A 137, 185 (2015)CrossRefGoogle Scholar
  32. 32.
    S.F. Ni, C.X. Fu, P. Wu, Chin. Wild Plant Resour. 23, 8 (2004)Google Scholar
  33. 33.
    T. Ahmad, M.A. Bustam, M. Irfan, M. Moniruzzaman, H.M. Anwaar Asghar, S. Bhattacharjee, J. Mol. Struct. 1159, 167 (2018)CrossRefGoogle Scholar
  34. 34.
    K. Gopinath, S. Gowri, V. Karthika, A. Arumugam, J. Nanostruct. Chem. 4, 115 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Ahmed, Annu, S. Ikram, Y.S. Salprima, J. Photochem. Photobiol. B 161, 141 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Paul, B. Bhuyan, D.D. Purkayastha, S. Vadivel, S.S. Dhar, Mater. Lett. 185, 143 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Ramakrishna, D.R. Babu, R.M. Gengan, S. Chandra, G.N. Rao, J. Nanostruct. Chem. 6, 1 (2016)CrossRefGoogle Scholar
  38. 38.
    K. Badri Narayanan, N. Sakthivel, Mater. Lett. 62, 4588 (2008)CrossRefGoogle Scholar
  39. 39.
    P.O. Bagci, Y.C. Wang, S. Gunasekaran, J. Food Sci. 80, 2071 (2015)CrossRefGoogle Scholar
  40. 40.
    K.P. Kumar, W. Paul, C.P. Sharma, Process Biochem. 46, 2007 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Rajan, A.R. Rajan, D. Philip, OpenNano 2, 1 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Borhamdin, M. Shamsuddin, A. Alizadeh, J. Exp. Nanosci. 11, 518 (2016)CrossRefGoogle Scholar
  43. 43.
    Y.J. Xiong, J.M. McLellan, Y.D. Yin, Y.N. Xia, Angew. Chem. Int. Ed. 46, 790 (2007)CrossRefGoogle Scholar
  44. 44.
    L. Sun, Y.C. Yin, F. Wang, W.X. Su, L.X. Zhang, Dalton Trans. 47, 4315 (2018)CrossRefGoogle Scholar
  45. 45.
    S.N. Wang, M.C. Zhang, W.Q. Zhang, ACS Catal. 1, 207 (2011)CrossRefGoogle Scholar
  46. 46.
    K.J. Sun, Chin. J. Catal. 37, 1608 (2016)CrossRefGoogle Scholar
  47. 47.
    P. Vijayaraghavan, C.H. Liu, R. Vankayala, C.S. Chiang, K.C. Hwang, Adv. Mater. 26, 6689 (2014)CrossRefGoogle Scholar
  48. 48.
    C. Clavero, Nat. Photonics 8, 95 (2014)CrossRefGoogle Scholar
  49. 49.
    P.X. Zhao, X.W. Feng, D.S. Huang, G.Y. Yang, D. Astruc, Coord. Chem. Rev. 287, 114 (2015)CrossRefGoogle Scholar
  50. 50.
    J.J. Lv, A.J. Wang, X.H. Ma, R.Y. Xiang, J.R. Chen, J.J. Feng, J. Mater. Chem. A 3, 290 (2015)CrossRefGoogle Scholar
  51. 51.
    A. Mondal, A. Mondal, B. Adhikary, D.K. Mukherjeem, Bull. Mater. Sci. 40, 321 (2017)CrossRefGoogle Scholar
  52. 52.
    H.F. Guo, Y.Y. Ren, Q.X. Cheng, D. Wang, Y.Y. Liu, Catal. Commun. 102, 136 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C 114, 8814 (2010)CrossRefGoogle Scholar
  54. 54.
    M.Z. Guo, J. He, Y. Li, S. Ma, X.H. Sun, J. Hazard. Mater. 310, 89 (2016)CrossRefGoogle Scholar
  55. 55.
    S. Malathi, T. Ezhilarasu, T. Abiraman, S. Balasubramanian, Carbohyd. Polym. 111, 734 (2014)CrossRefGoogle Scholar
  56. 56.
    C.S. McKay, D.C. Kennedy, J.P. Pezacki, Tetrahedron Lett. 50, 1893 (2009)CrossRefGoogle Scholar
  57. 57.
    J. Yu, D. Xu, H.N. Guan, C. Wang, L.K. Huang, D.F. Chi, Mater. Lett. 166, 110 (2016)CrossRefGoogle Scholar
  58. 58.
    S.H. Lim, E.Y. Ahn, Y. Park, Nanoscale Res. Lett. 11, 474 (2016)CrossRefGoogle Scholar
  59. 59.
    C.G. Yuan, C. Huo, S.X. Yu, B. Gui, Physica E 85, 19 (2017)CrossRefGoogle Scholar
  60. 60.
    J.G. Yu, L. Yue, S.W. Liu, B.B. Huang, X.Y. Zhang, J. Colloid Interface Sci. 334, 58 (2009)CrossRefGoogle Scholar
  61. 61.
    A. Manna, T. Imae, T. Yogo, K. Aoi, M. Okazaki, J. Colloid Interface Sci. 256, 297 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations