Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices

  • N. Ben MansourEmail author
  • W. Djeridi
  • L. El Mir


Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO2 indicate that the PF composite has a tendency to adsorb CO2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.


Porous organic/inorganic nanocomposites Sol–gel Pyrolysis temperature CO2 adsorption Negative differential resistance Electrical conductivity 


  1. 1.
    B.K. Na, H. Lee, K.K. Koo, H.K. Song, Ind. Eng. Chem. Res. 41, 5498 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Modak, M. Nandi, J. Mondal, A. Bhaumik, Chem. Commun. 48, 248 (2012)CrossRefGoogle Scholar
  3. 3.
    W. Zhang, T.Y. Liu, H.H. Wu, P. Wu, M.Y. He, Chem. Commun. 51, 682 (2015)CrossRefGoogle Scholar
  4. 4.
    L. El Mir, S. Kraiem, M. Bengagi, E. Elaloui, A. Ouderni, S. Alaya, Physica B 395, 104 (2007)CrossRefGoogle Scholar
  5. 5.
    L. El Mir, N. Ben Mansour, I. Najeh, M. Saadoun, S. Alaya, Int. J. Nano Biomater. 2, 249 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Ben Mansour, I. Najeh, M. Saadoun, B. Viallet, G.L. Gauffier, L. El Mir, Int. J. Nanoelectron. Mater. 3, 113 (2010)Google Scholar
  7. 7.
    B.M. Novak, Adv. Mater. 5, 422 (1993)CrossRefGoogle Scholar
  8. 8.
    A. Okada, A. Usuki, Mater. Sci. Eng. 3, 109 (1995)CrossRefGoogle Scholar
  9. 9.
    E.P. Giannelis, Adv. Mater. 8, 29 (1996)CrossRefGoogle Scholar
  10. 10.
    I.G. Chen, W.B. Johnson, J. Mater. Sci. 26, 1565 (1991)CrossRefGoogle Scholar
  11. 11.
    C.H. Chan, C.L. Cheng, Polym. Eng. Sci. 37, 1127 (1997)CrossRefGoogle Scholar
  12. 12.
    X. He, F. Chen, X. Chen, J. Mater. Sci.Lett. 20, 589 (2001)CrossRefGoogle Scholar
  13. 13.
    V. Veeramani, R. Madhu, S.M. Chen, P. Veerakumar, C.T. Hung, S.B. Liu, Sens. Actuators B 221, 1384 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Chem. Eng. J. 308, 240 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Yang, F. Yang, H. Hu, S. Lee, Y. Wang, H. Zhao, D. Zeng, B. Zhou, S. Hao, Chem. Eng. J. 307, 583 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.H. Peng, M.X. Guo, F. Shao, S. Liu, Q. Zhu, S.W. Bian, RSC Adv. 6, 74874 (2016)CrossRefGoogle Scholar
  17. 17.
    D.I. Jang, S.J. Park, Fuel 102, 439 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Suba, G. Rathika, E.R. Kumar, M. Saravanabhavan, J. Inorg. Organomet. Polym. 28, 1706 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Nano-Struct Nano-Objects 14, 19–48 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Amini, S.B. Tekantappeh, B. Eftekhari-Sis, P.G. Derakhshandeh, K.V. Hecke, J. Coord. Chem. 70(9), 1564 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Zirak, A. Abdollahiyan, B. Eftekhari-Sis, M. Saraei, Cellulose 25(1), 503 (2018)CrossRefGoogle Scholar
  22. 22.
    F. Li, H.Y. Chen, C.M. Wang, K.S. Hu, J. Electroanal. Chem. 531, 53 (2002)CrossRefGoogle Scholar
  23. 23.
    I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B 57, 147 (1999)CrossRefGoogle Scholar
  24. 24.
    E.L. Miller, R.E. Rocheleau, J. Electrochem. Soc. 144(9), 3072 (1997)CrossRefGoogle Scholar
  25. 25.
    H.X. Yang, Q.F. Dong, X.H. Hu, X.P. Ai, S.X. Li, J. Power Sources 79, 256 (1999)CrossRefGoogle Scholar
  26. 26.
    T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, J. Solid State Electrochem. 12, 1003 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61, 3174 (2007)CrossRefGoogle Scholar
  28. 28.
    N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 42(9), 3349 (2008)CrossRefGoogle Scholar
  29. 29.
    K.L. Chen, M. Elimelech, J. Colloid Interface Sci. 309(1), 126 (2007)CrossRefGoogle Scholar
  30. 30.
    A.J. Pelley, N. Tufenkji, J. Colloid Interface Sci. 321(1), 74 (2008)CrossRefGoogle Scholar
  31. 31.
    J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Langmuir, 24(13), 6659 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Dasog, R.W.J. Scott, Langmuir, 23(6), 3381 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Water Res. 42(8–9), 2204 (2008)CrossRefGoogle Scholar
  34. 34.
    K.A. Guzman, M.P. Finnegan, J.F. Banfield, Environ. Sci. Technol. 40(24), 7688 (2006)CrossRefGoogle Scholar
  35. 35.
    G.A. Waychunas, H. Zhang, M.F. Hochella, Elements 4(6), 381 (2008)CrossRefGoogle Scholar
  36. 36.
    N. Dutta, D. Green, Langmuir 24(10), 5260 (2008)CrossRefGoogle Scholar
  37. 37.
    D. Porter, K. Sriram, M. Wolfarth, A. Jefferson, D. SchweglerBerry, M.E. Andrew, Nanotoxicology 2(3), 144 (2008)CrossRefGoogle Scholar
  38. 38.
    N.A. Filinyuk, in Proceedings of a USSR Scientific and Technical Seminar on Devices with Negative Resistance, VDNH, Moscow, 1985, p. 6Google Scholar
  39. 39.
    N.A. Filinyuk, in Proceedings of a USSR Scientific and Technical Conference on Devices with Negative Resistance and Integrated Converters on Their Basis, Baku, 1991, p. 11Google Scholar
  40. 40.
    A.N. Seryeznov, L.N. Stepanova, S.A. Gorjainov, O.N. Negodenko, N.A. Fil-inyuk, F.D. Kasimov, Negatronics (Nauka, Siberian Book-Publishing Firm of RAN, Novosibirsk, 1995), p. 315Google Scholar
  41. 41.
    L. El Mir, A. Amlouk, C. Barthou, S. Alaya, Physica B 388, 412 (2007)CrossRefGoogle Scholar
  42. 42.
    L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. Von Bardeleben, S. Alaya, Appl. Surf. Sci. 254, 570 (2007)CrossRefGoogle Scholar
  43. 43.
    A.D. Wiersum, C. Giovannangeli, D. Vincent, E. Bloch, H. Reinsch, N. Stock, ACS Comb. Sci. 15, 111 (2013)CrossRefGoogle Scholar
  44. 44.
    H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120, 439 (2001)CrossRefGoogle Scholar
  45. 45.
    G.Y. Xiong, D.Z. Wang, Z.F. Ren, Carbon 44, 969 (2006)CrossRefGoogle Scholar
  46. 46.
    H. Dai, A.G. Rinzler, P. Nikolae, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260, 471 (1996)CrossRefGoogle Scholar
  47. 47.
    N. Ben Mansour, I. Najeh, S. Mansouri, L. El Mir, Appl. Surf. Sci. 337, 158 (2015)CrossRefGoogle Scholar
  48. 48.
    I. Najeh, N. Ben Mansour, M. Mbarki, A. Houas, J. Ph. Nogier, L. El Mir, Solid State Sci. 11, 1747 (2008)CrossRefGoogle Scholar
  49. 49.
    S. Guadria, I. Najeh, L. El Mir, J. Phys. Chem. Solids 110, 290 (2017)CrossRefGoogle Scholar
  50. 50.
    N. Ben Mansour, L. El Mir, J. Mater. Sci.: Mater. Electron. 28, 11284 (2017)Google Scholar
  51. 51.
    N. Ben Mansour, L. El Mir, J. Mater. Sci.: Mater. Electron. 27, 11682 (2016)Google Scholar
  52. 52.
    M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)CrossRefGoogle Scholar
  53. 53.
    N.F. Mott, E.A. Davis, Electronic Processes in Non Crystalline Materials (Clarendon, Oxford, 1979), p. 157Google Scholar
  54. 54.
    A.C. Warren, J.C. Male, Electron. Lett. 6, 567 (1970)CrossRefGoogle Scholar
  55. 55.
    H. Fritzsche, S.R. Ovshinsky, J. Non-Cryst. Solids 4, 464 (1970)CrossRefGoogle Scholar
  56. 56.
    R. Mehra, R. Shyam, P.C. Mathur, J. Non-Cryst. Solids 1, 435 (1979)CrossRefGoogle Scholar
  57. 57.
    M.A. Afifi, N.A. Hegab, Vacuum, 48, 135 (1997)CrossRefGoogle Scholar
  58. 58.
    R. Mehra, R. Shyam, P.C. Mathur, J. Non Crystalline Solids 31, 435 (1979)CrossRefGoogle Scholar
  59. 59.
    K. Shimawa, Y. Inagaki, T. Arizumi, J. Appl. Phys. 12, 1043 (1973)CrossRefGoogle Scholar
  60. 60.
    M.A. Afifi, N.A. Hegab, H.H. Labib, M. Fadel, Ind. J. Pure Appl. Phys. 30, 211 (1992)Google Scholar
  61. 61.
    M.A. Afifi, H.H. Labib, A.H. Abou El-Ela, K.A. Sharaf, Appl. Phys. A 46, 113 (1988)CrossRefGoogle Scholar
  62. 62.
    M.A. Afifi, N.A. Hegab, A.E. Bekheet, Vacuum, 47, 265 (1996)CrossRefGoogle Scholar
  63. 63.
    N.F. Mott, Phys. Rev. Lett. 31, 466 (1973)CrossRefGoogle Scholar
  64. 64.
    N.F. Mott, Conduction in Non-Crystalline Materials (Clarendon, Oxford, 1993)Google Scholar
  65. 65.
    A.K. Jonscher, Nature 276, 673 (1977)CrossRefGoogle Scholar
  66. 66.
    D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Mater. Chem. Phys. 115, 557 (2009)CrossRefGoogle Scholar
  67. 67.
    A.R. Long, Adv. Phys. 31, 553 (1982)CrossRefGoogle Scholar
  68. 68.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  69. 69.
    L.J. Meng, M. Andritschky, M.P. Dos, Santos, Vacuum, 45, 19 (1994)CrossRefGoogle Scholar
  70. 70.
    T.M. Meaz, S.M. Attia, A.M. AboElAta, J. Magn. Magn. Mater. 257, 296 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabesTunisia
  2. 2.Research Laboratory: Engineering Process and Industrial Systems, National School of Engineers of GabesGabes UniversityGabesTunisia

Personalised recommendations