Advertisement

Influence of As-Formed Metal-Oxide in Non-Activated Water-Unstable Organometallic Framework Pores as Hydrolysis Delay Agent: Interplay Between Experiments and DFT Modeling

  • Mehrzad Arjmandi
  • Mahdi Pourafshari ChenarEmail author
  • Majid Peyravi
  • Mohsen Jahanshahi
Article
  • 124 Downloads

Abstract

In this work, a new strategy to increase the stability of humid-unstable MOFs in humid environment has been investigated. Among many known humid-unstable MOFs, MOF-5 has been selected due to its unique properties. The present work quantifies the influence of exposure to humid environment on the properties of MOF-5 as a function of relative humidity, exposure time and activation process. The activated and non-activated MOF-5 s are directly compared considering their humid stability for the first time. The properties examined include PXRD, TGA, SEM, and BET surface area. Moreover, the water adsorption isotherms are obtained using a gravimetric method at 22 °C using RH up to 87% and both A-MOF-5 and NA-MOF-5 showed type V isotherm. According to the results obtained, water vapor adsorption on NA-MOF-5 starts faster than that of A-MOF-5. Also, the uptake saturation of water vapor on NA-MOF-5 is about 80% higher than that of A-MOF-5. According to results obtained, in contrast to A-MOF-5, the water adsorbed in NA-MOF-5 will not lead to hydrolysis. Prior to exposure, the calculated BET surface area for A-MOF-5 and NA-MOF-5 was 2460 and 1134 m2/g, respectively. For A-MOF-5, after exposure times of up to 72 h, the BET surface area in RH = 45% reduced to about 1220 m2/g, and in RH = 65%, because of the destruction of the crystal structure, surprisingly it reduced to 36 m2/g. Also, for NA-MOF-5, relatively small changes in BET surface area were observed for exposure times of up to 72 h (RH = 45 and 65%). According to experimental results, deformation of A-MOF-5 after 72 h exposure to RH = 65% is quite obvious and the initial structure of A-MOF-5 is not recovered even by re-activation process. The results of BET surface area for activated NA-MOF-5 indicate that the high quality of MOF-5 can be obtained by activation of final humidity exposed NA-MOF-5. According to DFT-based computational results, the as-formed ZnO will act as a delayed species for hydrolysis and destruction of the NA-MOF-5 structure.

Keywords

MOF-5 H2ZnO Adsorption Activation DFT 

Notes

Acknowledgements

The authors acknowledge Iran Nanotechnology Initiative Council for financial support.

Supplementary material

10904_2018_977_MOESM1_ESM.docx (426 kb)
Supplementary material 1 (DOCX 426 KB)

References

  1. 1.
    N. Al-Janabi, V. Martis, N. Servi, F.R. Siperstein, X. Fan, Cyclic adsorption of water vapour on CuBTC MOF: sustaining the hydrothermal stability under non-equilibrium conditions. Chem. Eng. J. 333, 594–602 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, H. Ding, Q. Zhong, Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Appl. Surf. Sci. 284, 138–144 (2013)CrossRefGoogle Scholar
  3. 3.
    X. Li, W. Guo, Zh Liu, R. Wang, H. Liu, Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130–136 (2016)CrossRefGoogle Scholar
  4. 4.
    H.W.B. Teo, A. Chakraborty, Water adsorption on various metal organic framework. IOP Conf. Ser. 272, 012019 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Sun, G. Gao, D. Yan, Ch Feng, Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl. Surf. Sci. 405, 52–59 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Khabzina, D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous Mesoporous Mater. 265, 143–148 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 337, 351–371 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Arjmandi, M. Pakizeh, Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: theory and experiment. J. Ind. Eng. Chem. 20, 3857–3868 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Tan, N. Nijem, Y. Gao, S. Zuluaga, J. Li, T. Thonhauser, Y.J. Chabal, Water interactions in metal organic frameworks. CrystEngComm 17, 247–260 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Tan, S. Zuluaga, Q. Gong, P. Canepa, H. Wang, J. Li, Y.J. Chabal, T. Thonhauser, Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74. Chem. Mater. 26, 6886–6895 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan, Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58, 105–114 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Kasik, Y.S. Lin, Organic solvent pervaporation properties of MOF-5 membranes. Sep. Purif. Technol. 121, 38–45 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Jiao, C.R. Morelock, N.C. Burtch, W.P. Mounfield, J.T. Hungerford, K.S. Walton, Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni. Ind. Eng. Chem. Res. 54, 12408–12414 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Lu, Z. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T.G. Iii, M. Bosch, H.C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRefGoogle Scholar
  15. 15.
    G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K.P. Lillerud, Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014)CrossRefGoogle Scholar
  16. 16.
    J.E. Mondloch, O. Karagiaridi, O.K. Farha, J.T. Hupp, Activation of metal-organic framework materials. CrystEngComm 15, 9258 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Kadhom, B. Deng, Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 11, 219–230 (2018)CrossRefGoogle Scholar
  18. 18.
    P.G. Ingole, M. Sohail, A.M. Abou-Elanwar, M.I. Baig, J.D. Jeon, W.K. Choi, H. Kim, H.K. Lee, Water vapor separation from flue gas using MOF incorporated thin film nanocomposite hollow fiber membranes. Chem. Eng. J. 334, 2450–2458 (2018)CrossRefGoogle Scholar
  19. 19.
    S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Tachikawa, J.R. Choi, M. Fujitsuka, T. Majima, Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metal-organic frameworks and semiconductor metal oxides. J. Phys. Chem. C 112, 14090–14101 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Sabo, A. Henschel, H. Frode, E. Klemmb, S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J. Mater. Chem. 17, 3827–3832 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Ming, J. Purewal, J. Yang, Ch Xu, R. Soltis, J. Warner, M. Veenstra, M. Gaab, U. Muller, D.J. Siegel, Kinetic stability of MOF–5 in humid environments: impact of powder densification, humidity level, and exposure time. Langmuir 31, 4988–4995 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Ming, N. Kumar, D.J. Siegel, Water adsorption and insertion in MOF–5. ACS Omega 2, 4921–4928 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Hausdorf, J. Wagler, R. Moβig, F.O. Mertens, Proton and water activity-controlled structure formation in zinc carboxylatebased metal organic frameworks. J. Phys. Chem. A 112, 7567–7576 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Han, Y. Huang, T. Watanabe, S. Nair, K.S. Walton, D.S. Sholl, J.C. Meredith, MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2. Microporous Mesoporous Mater. 173, 86–91 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Jasuja, N.C. Burtch, Y.g. Huang, Y. Cai, K.S. Walton, Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 29, 633–642 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Paranthaman, F.X. Coudert, A.H. Fuchs, Water adsorption in hydrophobic MOF channels. Phys. Chem. Chem. Phys. 12, 8123–8129 (2010)CrossRefGoogle Scholar
  28. 28.
    J.A. Greathouse, M.D. Allendorf, The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678–10679 (2006)CrossRefGoogle Scholar
  29. 29.
    S.S. Han, S.H. Choi, A.C.T. van Duin, Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field. Chem. Commun. 46, 5713–5715 (2010)CrossRefGoogle Scholar
  30. 30.
    M.D. Toni, R. Jonchiere, P. Pullumbi, F.X. Coudert, A.H. Fuchs, How can a hydrophobic MOF be water-unstable? Insight into the hydration mechanism of IRMOFs. ChemPhysChem 13, 3497–3503 (2012)CrossRefGoogle Scholar
  31. 31.
    D. Saha, S. Deng, Z. Yang, Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach. J. Porous Mater. 16, 141–149 (2009)CrossRefGoogle Scholar
  32. 32.
    S.P. Anthony, J.I. Lee, J.K. Kim, Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl. Phys. Lett. 90, 103107 (2007)CrossRefGoogle Scholar
  33. 33.
    D. Ramirez, P. Bartlett, M. Abdelsalam, H. Gomez, D. Lincot, Electrochemical synthesis of macroporous zinc oxide layers by employing hydrogen peroxide as oxygen precursor. Phys. Status Solidi A 205, 2365–2370 (2008)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, Y.H. Hu, Structure distortion of Zn4O13C24H12 framework (MOF-5). Mater. Sci. Eng. B 176, 573–578 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Arjmandi, M. Pakizeh, O. Pirouzram, The role of tetragonal-MOF-5 loadings with extra ZnO molecule on the gas separation performance of mixed matrix membrane. Korean J. Chem. Eng. 32, 1178–1187 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Arjmandi, M. Pakizeh, Effects of washing and drying on crystal structure and pore size distribution (PSD) of Zn4O13C24H12 framework (IRMOF-1). Acta Metall. Sin. (Engl. Lett.) 26, 597–601 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Lotfi, Y. Saboohi, Effect of metal doping, boron substitution and functional groups on hydrogen adsorption of MOF-5: a DFT-D study. Comput. Theor. Chem. 1044, 36–43 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Dixit, T.A. Maark, S. Pal, Ab initio and periodic DFT investigation of hydrogen storage on light metal-decorated MOF-5. Int. J. Hydrog. Energy 36, 10816–10827 (2011)CrossRefGoogle Scholar
  39. 39.
    T. Mueller, G. Ceder, A density functional theory study of hydrogen adsorption in MOF-5. J. Phys. Chem. B 109, 17974–17983 (2005)CrossRefGoogle Scholar
  40. 40.
    Z.I. Salih, Y.J. Guo, J.J. Zheng, X. Zhao, Effect of modified linkers of MOF-5 on enhancing interaction energies: a theoretical study. Comput. Theor. Chem. 1058, 28–33 (2015)CrossRefGoogle Scholar
  41. 41.
    M.J. Frisch, Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford, 2009)Google Scholar
  42. 42.
    A.S. Rad, K. Ayub, Ni adsorption on Al12P12 nano-cage: DFT study. J. Alloys Compd. 678, 317–324 (2016)CrossRefGoogle Scholar
  43. 43.
    R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions I. J. Chem. Phys. 23, 1833–1840 (1955)CrossRefGoogle Scholar
  44. 44.
    E.V. Perez, K.J. Balkus Jr., J.P. Ferraris, I.H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165–173 (2009)CrossRefGoogle Scholar
  45. 45.
    A. Samanta, T. Furuta, J. Li, Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J. Chem. Phys. 125, 084714 (2006)CrossRefGoogle Scholar
  46. 46.
    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRefGoogle Scholar
  47. 47.
    A. Soltani, M.R. Taghartapeh, H. Mighani, A.A. Pahlevani, R. Mashkoor, A first principles study of the SCN-chemisorption on the surface of AlN, AlP, and BP nanotubes. Appl. Surf. Sci. 259, 637–642 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Samadizadeh, S.F. Rastegar, A.A. Peyghan, F, Cl, Li‏+ and Na‏+ adsorption on AlN nanotube surface: a DFT study. Physica E 69, 75–80 (2015)CrossRefGoogle Scholar
  49. 49.
    A.Sh Rad, Kh Ayub, A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys Compd. 672, 161–169 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Research Center of Membrane Processes and Membrane, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Membrane Research Group, Nanotechnology Research InstituteBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations