Advertisement

A Water Stable Metal–Organic Framework Based on Eu Clusters as Highly Selective Luminescent Sensor Towards MnO4

  • Feng GuoEmail author
  • Qianya Yang
  • Xiaoyan Li
Article
  • 67 Downloads

Abstract

A novel water stable Eu-MOF, namely [Eu(H2O)2(CPBDA)]n, was solvothermally synthesized by rigid ligand 3-(6-carboxypyridin-3-yl)benzene-1,4-dioic acid (H3CPBDA) and Eu(III) ion. The resultant sample was studied in detail by single X-ray diffraction, powder X-ray diffraction, elemental analysis (C, H and N), thermogravimetric analysis and luminescence. Due to its water stability and luminescence properties, the resultant sample can be used as a luminescent sensor for MnO4 in water. Furthermore, it also can be reused at least four times without any change.

Keywords

Metal–organic framework Stability Luminescence Sensor 

Supplementary material

10904_2018_975_MOESM1_ESM.pdf (245 kb)
Supplementary material 1 (PDF 245 KB)
10904_2018_975_MOESM2_ESM.txt (21 kb)
Supplementary material 2 (TXT 20 KB)
10904_2018_975_MOESM3_ESM.doc (458 kb)
Supplementary material 3 (DOC 458 KB)

References

  1. 1.
    H. He, D.Y. Zhang, F. Guo, F. Sun, A versatile microporous zinc(II) metal–organic framework for selective gas adsorption, cooperative catalysis, and luminescent sensing. Inorg. Chem. 57, 7314–7320 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Duan, J. Huang, S. Liu, T. Yu, J. Li, Y. Hao, Z. Liu, B. Liu, Synthesis, structure, magnetic properties of a 2D (3,4,5)-connected framework based on the tetranuclear Cu4 units. Inorg. Chem. Commun. 81, 47–50 (2017)CrossRefGoogle Scholar
  3. 3.
    H. He, F. Sun, N. Zhao, R. Yuan, G. Zhu, Three novel zinc(II) metal–organic frameworks based on three tetrazolate ligands: synthesis, structures and photoluminescence. RSC Adv. 4, 21535–21540 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Øien-Ødegaard, G.C. Shearer, D.S. Wragg, K.P. Lilleruda, Pitfalls in metal–organic framework crystallography: towards more accurate crystal structures. Chem. Soc. Rev. 46, 4867–4876 (2017)CrossRefGoogle Scholar
  5. 5.
    H. He, F. Sun, H. Su, J. Jia, Q. Li, G. Zhu, Syntheses, structures and luminescence properties of three metal–organic frameworks based on 5-(4-(2H-tetrazol-5-yl)phenoxy)isophthalic acid. CrystEngComm 16, 339–343 (2014)CrossRefGoogle Scholar
  6. 6.
    H. He, J. Du, H. Su, Y. Yuan, Y. Song, F. Sun, Four new metal–organic frameworks based on bi-, tetra-, penta-, and hexa-nuclear clusters derived from 5-(phenyldiazenyl)isophthalic acid: syntheses, structures and properties. CrystEngComm 17, 1201–1209 (2015)CrossRefGoogle Scholar
  7. 7.
    S.C. King, R.-B. Lin, H. Wang, H.D. Arman, B. Chen, Two-dimensional metal–organic frameworks for selective separation of CO2/CH4 and CO2/N2. Mater. Chem. Front. 1, 1514–1519 (2017)CrossRefGoogle Scholar
  8. 8.
    H. He, Y. Song, C. Zhang, F. Sun, R. Yuan, Z. Bian, L. Gao, G. Zhu, A highly robust metal–organic framework based on an aromatic 12-carboxyl ligand with highly selective adsorption of CO2 over CH4. Chem. Commun. 51, 9463–9466 (2015)CrossRefGoogle Scholar
  9. 9.
    J.-T. Li, J. Li, L.-M. Song, X.-H. Ji, Microporous metal–organic framework with 1D helical chain building units: synthesis, structure and gas sorption properties. Inorg. Chem. Commun. 83, 88–91 (2017)CrossRefGoogle Scholar
  10. 10.
    H. He, F. Sun, B. Aguila, J.A. Perman, S. Ma, G. Zhu, A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. J. Mater. Chem. A 4, 15240–15246 (2016)CrossRefGoogle Scholar
  11. 11.
    R.-G. Lin, L. Li, R.-B. Lin, H. Arman, B. Chen, Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metal–organic framework. CrystEngComm 19, 6896–6901 (2017)CrossRefGoogle Scholar
  12. 12.
    H. He, F. Sun, S. Ma, G. Zhu, Reticular synthesis of a series of HKUST-like MOFs with carbon dioxide capture and separation. Inorg. Chem. 55, 9071–9076 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Chang, B. Li, H. Wang, T. Hu, Z. Bao, B. Chen, Control of interpenetration in a microporous metal–organic framework for significantly enhanced C2H2/CO2 separation at room temperature. Chem. Commun. 52, 3494–3496 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Samui, S.K. Sahu, One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst. New J. Chem. 42, 4192–4200 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50, 1423–1432 (2017)CrossRefGoogle Scholar
  16. 16.
    H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, Construction of thermophilic lipase-embedded metal–organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl. Mater. Interfaces 37, 24517–24524 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Goel, N. Kumar, A dual-functional luminescent Tb(III) metal–organic framework for the selective sensing of acetone and TNP in water. RSC Adv. 8, 10746–10755 (2018)CrossRefGoogle Scholar
  18. 18.
    H. He, F. Sun, J. Jia, Z. Bian, N. Zhao, X. Qiu, L. Gao, G. Zhu, Fluorescent Dodecapus in 3D framework. Cryst. Growth Des. 14, 4258–4261 (2014)CrossRefGoogle Scholar
  19. 19.
    C.H. Chen, X.S. Wang, L. Li, Y.B. Huang, R. Cao, Highly selective sensing of Fe3+ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans. 47, 3452–3458 (2018)CrossRefGoogle Scholar
  20. 20.
    H. He, Y. Song, F. Sun, Z. Bian, L. Gao, G. Zhu, A porous metal–organic framework formed by a V-shaped ligand and Zn(II) ion with highly selective sensing for nitroaromatic explosives. J. Mater. Chem. A 3, 16598–16603 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Zhang, Y. Zhou, J. Cuan, N. Gan, A lanthanide functionalized MOF hybrid for ratiometric luminescence detection of an anthrax biomarker. CrystEngComm 20, 1264–1270 (2018)CrossRefGoogle Scholar
  22. 22.
    H. He, Y. Song, F. Sun, N. Zhao, G. Zhu, Sorption properties and nitroaromatic explosives sensing based on two isostructural metal–organic frameworks. Cryst. Growth Des. 15, 2033–2038 (2015)CrossRefGoogle Scholar
  23. 23.
    H. He, S.H. Chen, D.Y. Zhang, R. Hao, C. Zhang, E.C. Yang, X.J. Zhao, A micrometer-sized europium(III)–organic framework for selective sensing of the Cr2O7 2– anion and picric acid in water systems. Dalton Trans. 46, 13502–13509 (2017)CrossRefGoogle Scholar
  24. 24.
    X.D. Zhu, K. Zhang, Y. Wang, W.W. Long, R.J. Sa, T.F. Liu, J. Lü, Fluorescent metal–organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater. Inorg. Chem. 57, 1060–1065 (2018)CrossRefGoogle Scholar
  25. 25.
    H. He, Q.Q. Zhu, F. Sun, G. Zhu, Two 3D metal–organic frameworks based on CoII and ZnII clusters for knoevenagel condensation reaction and highly selective luminescence sensing. Growth Des. 18, 5573–5581 (2018)CrossRefGoogle Scholar
  26. 26.
    H. He, F. Sun, T. Borjigin, N. Zhao, G. Zhu, Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF. Dalton Trans. 43, 3716–3721 (2014)CrossRefGoogle Scholar
  27. 27.
    J.N. Hao, B. Yan, Ln3+ post-functionalized metal–organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. New J. Chem. 40, 4654–4661 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Li, J. Luo, L. Wang, C. Qi, Y. Yang, X. Zhang, J. Qian, Two cage-based zinc-tetracarboxylate frameworks with white-light emission. CrystEngComm 19, 214–217 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Li, Y. Zhu, X. Zhou, C.D.S. Brites, D. Ananias, Z. Lin, F.A. Almeida Paz, J. Rocha, W. Huang, L. Carlos, Visible-light excited luminescent thermometer based on single lanthanide organic frameworks. Adv. Funct. Mater. 26, 8677–8684 (2016)CrossRefGoogle Scholar
  30. 30.
    H. He, J.A. Perman, G. Zhu, S. Ma, metal–organic frameworks for CO2 shemical transformations. Small 12, 6309–6324 (2016)CrossRefGoogle Scholar
  31. 31.
    Z. Xu, G. Zhao, L. Ullah, M. Wang, A. Wang, Y. Zhang, S. Zhang, Acidic ionic liquid based UiO-67 type MOFs: a stable and efficient heterogeneous catalyst for esterification. RSC Adv. 8, 10009–10016 (2018)CrossRefGoogle Scholar
  32. 32.
    H. He, Q. Sun, W. Gao, J.A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma, A stable metal–organic framework featuring local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. 57, 4657–4662 (2018)CrossRefGoogle Scholar
  33. 33.
    P.H. Pham, S.H. Doan, H.T.T. Tran, N.N. Nguyen, A.N.Q. Phan, H.V. Le, T.N. Tu, N.T.S. Phan, A new transformation of coumarins via direct C–H bond activation utilizing an iron–organic framework as a recyclable catalyst. Catal. Sci. Technol. 8, 1267–1271 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Hu, J. Reboul, S. Furukawa, L. Radhakishnan, Y. Zhang, P. Srinivasu, H. Iwai, H. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Y. Yamauchi, Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun. 47, 8124–8126 (2011)CrossRefGoogle Scholar
  35. 35.
    R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 52, 4764–4767 (2016)CrossRefGoogle Scholar
  36. 36.
    L. Radhakrishnan, J. Reboul, S. Furukawa, P. Srinivasu, S. Kitagawa, Y. Yamauchi, Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem. Mater. 23, 1225–1231 (2011)CrossRefGoogle Scholar
  37. 37.
    C. Young, J. Wang, J. Kim, Y. Sugahara, J. Henzie, Y. Yamauchi, Controlled chemical vapor deposition for synthesis of nanowire arrays of metal–organic frameworks and their thermal conversion to carbon/metal oxide hybrid materials. Chem. Mater. 30, 3379–3386 (2018)CrossRefGoogle Scholar
  38. 38.
    W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J. Ho Kim, S. Wang, J. Liu, J.S. Jiang, Y. Yamauchi, M. Hu, Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8, 3538–3546 (2017)CrossRefGoogle Scholar
  39. 39.
    W. Chaikittisilp, N.L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem. Eur. J. 20, 4217–4221 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Tang, Y. Yamauchi, Carbon materials: MOF morphologies in control. Nat. Chem. 8, 638–639 (2016)CrossRefGoogle Scholar
  41. 41.
    B. Li, Y. Belmabkhout, Y. Zhang, P. Bhatt, H. He, D. Zhang, Y. Han, M. Eddaoudi, J.A. Perman, S. Ma, From equilibrium based MOF adsorbent to kinetic selective carbon molecular sieve for paraffins/iso-paraffins separation. Chem. Commun. 52, 13897–13900 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Chen, H. Cui, Y. Wang, X. Liang, L. Zhang, C.Y. Su, Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Trans. 47, 3940–3946 (2018)CrossRefGoogle Scholar
  43. 43.
    X. Zhang, Z. Zhan, X. Ling, C. Chen, X. Liu, Y. Jia, M. Hu, Lanthanide-MOFs constructed from mixed dicarboxylate ligands as selective multi-responsive luminescent sensors. Dalton Trans. 47, 3272–3282 (2018)CrossRefGoogle Scholar
  44. 44.
    H. He, S.H. Chen, D.Y. Zhang, E.C. Yang, X.J. Zhao, A luminescent metal–organic framework as an ideal chemosensor for nitroaromatic compounds. RSC Adv. 7, 38871–38876 (2017)CrossRefGoogle Scholar
  45. 45.
    X.H. Huang, L. Shi, S.M. Ying, G.Y. Yan, L.H. Liu, Y.Q. Sun, Y.P. Chen, Two lanthanide metal–organic frameworks as sensitive luminescent sensors for the detection of Cr2+ and Cr2O7 2– in aqueous solutions. CrystEngComm 20, 189–197 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Wang, H. Yang, G. Cheng, Y. Wu, S. Lin, A new Tb(III)-functionalized layer-like Cd MOF as luminescent probe for high-selectively sensing of Cr3+. CrystEngComm 19, 7270–7276 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Yang, L. Chen, F. Jiang, X. Wan, M. Yu, Z. Cao, T. Jing, M. Hong, Fabricating a super stable luminescent chemosensor with multi-stimuli-response to metal ions and small organic molecules through turn-on and turn-off effects. J. Mater. Chem. C 5, 4511–4519 (2017)CrossRefGoogle Scholar
  48. 48.
    M. Zhang, J. Han, H. Wu, Q. Wei, G. Xie, S. Chen, S. Gao, Tb-MOF: a naked-eye and regenerable fluorescent probe for selective and quantitative detection of Fe3+ and Al3+ ions. RSC Adv. 6, 94622–94628 (2016)CrossRefGoogle Scholar
  49. 49.
    E.J. Gao, S.K. Liang, C. Ma, M.C. Zhu, X.Y. Ma, H.T. Jin, F.C. Zhao, Y. Meng, A novel Mn(II) complex with 3-(2,5-dicarboxyl)-5-carboxylpyridine: synthesis, crystal structure, and interaction with DNA. Russ. J. Coord. Chem. 41, 599–606 (2015)CrossRefGoogle Scholar
  50. 50.
    Y.-L. Shao, Y.-H. Cui, J.-Z. Gu, A.M. Kirillov, J. Wua, Y.-W. Wang, A variety of metal–organic and supramolecular networks constructed from a new flexible multifunctional building block bearing picolinate and terephthalate functionalities: hydrothermal self-assembly, structural features, magnetic and luminescent properties. RSC Adv. 5, 87484–87495 (2015)CrossRefGoogle Scholar
  51. 51.
    G.M. Sheldrick, SHELXTL Version 5.1 Software Reference Manual, (Bruker AXS Inc., Madison, 1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Inorganic Special Functional Materials, School of Chemistry and Chemical EngineeringYangtze Normal UniversityChongqingChina

Personalised recommendations