Advertisement

Defective Graphite and Its Decoration with Copper Oxide Nanoparticles Synthesized with Olive Leaf Extract for Electrochemical Water Splitting

  • Imane Atmane
  • Nadjah Sobti
  • Loubna Chetibi
  • Anna Dimitrova
  • Salah Zerkout
  • Slimane AchourEmail author
Article
  • 45 Downloads

Abstract

Water splitting has been regarded as a promising route to generate hydrogen which is considered as an ideal alternative to fossil fuels due to its light weight, environmentally benign oxidation product and high energy density. For this purpose, solutions of copper oxide or copper–olive leaf extract complexes were synthesized using copper acetate as a precursor and olive leaf extract as a reducer/stabilizer. Highly defected graphite (DG) rods and plates were then decorated with these particles. The decoration process was conducted by simple immersion of the graphitic materials in the solution followed by oxidation at 250 °C to obtain stable cupric oxide nanoparticles on the DGs and used as electrodes. The decorated electrodes were tested for hydrogen evolution reaction (HER) and oxygen evolution reaction in Na2CO3. It was found that the current density and stability for HER reaction can be enhanced as a result of this decoration. The current density variation with temperature variation was monitored and was found to increase when the electrolyte temperature increases from 25 to 48 °C, indicating a possible harvesting of solar thermal energy as assistant in water splitting process.

Keywords

Copper oxide Olive leaf extract Defective graphite Hydrogen evolution reaction 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A. Abbasi, J.J. Sardroodi, Comput. Theor. Chem. 1095, 15 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Abbasi, J.J. Sardroodi, Appl. Surf. Sci. 436, 27 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Abbasi, J.J. Sardroodi, New J. Chem. 41, 12569 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Abbasi, J.J. Sardroodi, Surf. Sci. 668, 150 (2018)CrossRefGoogle Scholar
  5. 5.
    S.U. Rather, Int. J. Hydrog. Energy 42, 11553 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Borkar, R. Dahake, S. Rayalu, A. Bannsiwal, J. Electron. Mater. 47, 1824 (2017)CrossRefGoogle Scholar
  7. 7.
    F. Yang, J. Guo, M. Liu, S. Yu, N. Yan, J. Li, Z. Guo, J. Mater. Chem. A. 3, 20477 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Poreddy, C. Engelbrekt, A. Riisager, Catal. Sci. Technol. 5, 2467 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, Energy Environ. Sci. 8, 1493 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, Nat. Catal. 1, 412 (2018)CrossRefGoogle Scholar
  11. 11.
    C.S. Chen, C.C. Chen, T.A. Lai, J.H. Wu, C.H. Chen, J.F. Lee, J. Phys. Chem. C 115, 12891 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Li, K. Kumar, N. Chopra, Nanomater. Energy 3, 93 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Adv. Mater. 29, 1604480 (2017)CrossRefGoogle Scholar
  14. 14.
    I.M. Afanasov, V.A. Morozov, A.V. Kepman, S.G. Ionov, A.N. Seleznev, G.V. Tendeloo, V.V. Avdeev, Carbon 47, 263 (2009)CrossRefGoogle Scholar
  15. 15.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Baioun, H. Kellawi, A. Falah, Carbon Lett. 24, 47 (2017)Google Scholar
  17. 17.
    M.J. Guajardo-Pacheco, J.E. Morales-Sanchez, J. Gonzalez-Hernandez, F. Ruiz, Mater. Lett. 64, 1361 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Spectrochim. Acta A 121, 746 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane, B. Ihssane, Appl. Nanosci. 4, 571 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Saif, A. Tahir, Y. Chen, Nanomaterials 6(11), 209 (2016)CrossRefGoogle Scholar
  21. 21.
    A.Y. El-Etre, J. Colloid Interface Sci. 314, 578 (2007)CrossRefGoogle Scholar
  22. 22.
    O. Benavente-García, J. Castillo, J. Lorente, A. Ortuno, J.A. Del Rio, Food Chem. 68, 457 (2000)CrossRefGoogle Scholar
  23. 23.
    Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas, T. Jan, Int. J. Nanomed. 11, 5015 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Fu, D. Arráez-Román, J.A. Menéndez, A. Segura-Carretero, A. Fernández-Gutiérrez, Rapid Commun. Mass Spectrom. 23, 51 (2009)CrossRefGoogle Scholar
  25. 25.
    C.R. Capo, J.Z. Pedersen, M. Falconi, L. Rossi, J. Trace Elem. Med. Biol. 44, 225 (2017)CrossRefGoogle Scholar
  26. 26.
    V.S. Levitskii, V.I. Shapovalov, A.E. Komlev, A.V. Zav’yalov, V.V. Vit’ko, A.A. Komlev, E.S. Shutova, Tech. Phys. Lett. 4, 1094 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Powell, A. Compaan, J.R. Macdonald, Phys. Rev. B 12, 20 (1975)CrossRefGoogle Scholar
  28. 28.
    H.Y.H. Chan, C.G. Takoudis, M.J. Weaver, J. Phys. Chem. B 103, 357 (1999)CrossRefGoogle Scholar
  29. 29.
    C. Toparli, A. Sarfraz, A. Erbe, Phys. Chem. Chem. Phys. 17, 31670 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Debbichi, M.C. Marco de Lucas, J.F. Pierson, P. Kru¨ger, J. Phys. Chem. C 116, 10232 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Hagemam, H. Bill, W. Sadowski, E. Walker, M. François, Solid State Commun. 73, 447 (1990)CrossRefGoogle Scholar
  32. 32.
    D.P. Volanti, D. Keyson, L.S. Cavalcante, A.Z. Simões, M.R. Joya, E. Longo, J.A. Varela, P.S. Pizani, A.G. Souza, J. Alloys Compds. 459, 537 (2008)CrossRefGoogle Scholar
  33. 33.
    A.Ya. Vul et al. Diam. Relat. Mater. 20, 205–209 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Pei, Z.-Q. Zhang, B.-H. Li, M. Vinu, C.-H. Lin, S. Lee, J. Phys. Chem. C 121, 22939 (2017)CrossRefGoogle Scholar
  35. 35.
    S.C. Thomsen, Phys. Rev. Lett. 85, 5214–5217 (2000)CrossRefGoogle Scholar
  36. 36.
    L.G. Cancado, A. Reina, J. Kong, M.S. Dresselhaus, Phys. Rev. B 77, 245408 (2008)CrossRefGoogle Scholar
  37. 37.
    V. Zólyomi, J. Koltai, J. Kürti, Phys. Status Solidi B 248(11), 2435 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Zhang, X.T. Zeng, H. Xie, P. Hing, Surf. Coat. Technol. 123, 256 (2000)CrossRefGoogle Scholar
  39. 39.
    G. Hu, Q. Tang, D. Jiang, Phys. Chem. Chem. Phys. 18, 23864 (2016)CrossRefGoogle Scholar
  40. 40.
    D. Zhan, D.J. Velmurugan, M.V. Mirkin, J. Am. Chem. Soc. 131(41), 14756 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Kahyarian, B. Brown, S. Nesic, J. Electrochem. Soc. 164, H365 (2017)CrossRefGoogle Scholar
  42. 42.
    C. Meng, B. Wang, Z. Gao, Z. Liu, Q. Zhang, J. Zhai, Sci. Rep. 7, 41825 (2017)CrossRefGoogle Scholar
  43. 43.
    A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Energy Environ. Sci. 5, 5577 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Dou, J. Wu, L. Tao, A. Shen, J. Huo, S. Wang, Nanotechnology 27, 045402 (2016)CrossRefGoogle Scholar
  45. 45.
    C. Yang, F. Xiao, J.D. Wang, X.T. Su, Sens. Actuators B 207, 177 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Katoch, S.W. Choi, G.J. Sun, H.W. Kim, S.S. Kim, Nanotechnology 25, 175501 (2014)CrossRefGoogle Scholar
  47. 47.
    T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Grätzel, N. Mathews, Adv. Mater. 24, 2699 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Imane Atmane
    • 1
  • Nadjah Sobti
    • 2
  • Loubna Chetibi
    • 3
  • Anna Dimitrova
    • 4
  • Salah Zerkout
    • 1
  • Slimane Achour
    • 3
    Email author
  1. 1.ENSETSkikdaAlgeria
  2. 2.University of Batna 2BatnaAlgeria
  3. 3.Research Unit in Materials Sciences and ApplicationConstantine University 1 and ENPC of ConstantineConstantineAlgeria
  4. 4.Institute of Physics and Institute of Micro- and NanotechnologiesTechnische Universität IlmenauIlmenauGermany

Personalised recommendations