A Novel Layered Neodymium Squarate MOF Intercalating Free Ammonium and Squarate Ions {(NH4)2[Nd2(H2O)10(C4O4)3]C4O4}n: Synthesis, Crystal Structure and Thermal Decomposition

  • Ali Bensaddek
  • Hocine AkkariEmail author
  • Vasyl Kinzhybalo


The X-ray study of the title compound {(NH4)2[Nd2(H2O)10(C4O4)3]C4O4}n(1) reveals that it crystallizes in the monoclinic system, space group P21/c (N°: 14), with unit cell parameters, a = 7.483(3), b = 27.866(7), c = 6.766(2) Å and β = 103.95(3)°. The crystal structure consists of a Nd–MOF/salt alternating layers, where neodymium–metal organic framework (Nd–MOF) layer lies in (200) plane, formed by isolated [NdO9] polyhedra linked by bridging squarate ligands in µ2- and µ4-coordination modes. The salt layers lie at x = 0 and are sandwiched between Nd–MOF layers; they consist of squarate anions and ammonium cations (in 1:2 ratio). Hydrogen bonds and π–π stacking play a pivotal role in structure cohesion between Nd–MOF layers leading to the formation of a 3D networks. The features of the IR spectrum are consistent with the crystal structure. The TG-DTA reveals that first water is lost from the coordination compound, and then the anionic ligands along with ammonium cations are removed leaving metal oxide as residue of the substance.


Neodymium squarate Ln–MOFs Crystal structure Ammonium Thermal decomposition 



This work was financially supported by the CNEPRU research program “E01620130047” from Algerian Ministry of Higher Education and Scientific Research. Authors are grateful to Prof. Hassina Harkat and Dr Katarzyna Ślepokura for their technical assistance during synthesis of compound (1) and Data collection of single-crystal X-ray diffraction, respectively.


  1. 1.
    N. Stock, S. Biswas, Chem. Rev 112, 933 (2012)CrossRefGoogle Scholar
  2. 2.
    H.-C.J. Zhou, S. Kitagawa, Chem. Soc. Rev 43, 5415 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Hong, X. Zhou, W. Huang, P. Shan, F. Dong, Braz. J. Med. Biol. Res. 51, e7050 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Pan, K.M. Adams, H.E. Hernandez, X. Wang, C. Zheng, Y. Hattori, K. Kaneko, J. Am. Chem. Soc 125, 3062 (2003)CrossRefGoogle Scholar
  5. 5.
    L.-L. Luo, X.-L. Qu, Z. Li, X. Li, H.-L. Sun, Dalton Trans. 47, 925 (2018)CrossRefGoogle Scholar
  6. 6.
    R.B. Getman, Y.-S. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev 112, 703 (2012)CrossRefGoogle Scholar
  7. 7.
    A.-M. Badiane, S. Freslon, C. Daiguebonne, Y. Suffren, K. Bernot, G. Calvez, K. Costuas, M. Camara, O. Guillou, Inorg. Chem 57, 3399 (2018)CrossRefGoogle Scholar
  8. 8.
    C. Pagis, M. Ferbinteanu, G. Rothenberg, S. Tanase, ACS Catal. 6, 6063 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev 112, 1126 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Erer, O.Z. Yeşilel, O. Büyükgüngör, Polyhedron 29, 1163 (2010)CrossRefGoogle Scholar
  11. 11.
    L.-X. You, B.-B. Zhao, H.-J. Liu, S.-J. Wang, G. Xiong, Y.-K. He, F. Ding, J.J. Joos, P.F. Smet, Y.-G. Sun, CrystEngComm 20, 615 (2018)CrossRefGoogle Scholar
  12. 12.
    S.S. Massoud, F.R. Louka, F.A. Mautner, CrystEngComm 17, 7604 (2015)CrossRefGoogle Scholar
  13. 13.
    J.-C. Trombe, J.F. Petit, A. Gleizes, New J. Chem 12, 197 (1988)Google Scholar
  14. 14.
    S.L. Georgopoulos, R. Diniz, M.I. Yoshida, N.L. Speziali, H.F.D. Santos, G.M.A. Junqueira, L.F.C. de Oliveira, J. Mol. Struct 794, 63 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Robl, A. Weiss, Mater. Res. Bull 22, 373 (1987)CrossRefGoogle Scholar
  16. 16.
    J.-F. Petit, A. Gleizes, J.-C. Trombe, Inorg. Chim. Acta 167, 51 (1990)CrossRefGoogle Scholar
  17. 17.
    J.-C. Trombe, J.-F. Petit, A. Gleizes, Inorg. Chim. Acta 167, 69 (1990)CrossRefGoogle Scholar
  18. 18.
    Y.-S. Liu, M.-F. Tang, K.-H. Lii, Dalton Trans. (2009). Google Scholar
  19. 19.
    N. Mahé, T. Bataille, Inorg. Chem. 43, 8379 (2004)CrossRefGoogle Scholar
  20. 20.
    O. D. L. A. CrysAlisCCD and CrysAlisRED in KM4-CCD software. England (2009)Google Scholar
  21. 21.
    A.T. CrysAlisPro, Yarnton, UK (2012)Google Scholar
  22. 22.
    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr 27, 435 (1994)Google Scholar
  23. 23.
    G. Sheldrick, Acta Crystallogr. Sect. A 71, 3 (2015)CrossRefGoogle Scholar
  24. 24.
    C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Crystallogr 39, 453 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Perles, P. Delgado-Martinez, R. Jimenez-Aparicio, J.L. Priego, M.R. Torres, F.A. Urbanos, Acta Crystallogr. Sect. A 67, C725 (2011)CrossRefGoogle Scholar
  26. 26.
    S.L. Georgopoulos, R. Diniz, B.L. Rodrigues, M.I. Yoshida, L.F.C. de Oliveira, J. Mol. Struct 753, 147 (2005)CrossRefGoogle Scholar
  27. 27.
    O.S.C. Headley, L.A. Hall, Polyhedron 5, 1829 (1986)CrossRefGoogle Scholar
  28. 28.
    R. West, H.Y. Niu, J. Am. Chem. Soc. 85, 2589 (1963)CrossRefGoogle Scholar
  29. 29.
    R.P. Turcotte, J.O. Sawyer, L. Eyring, Inorg. Chem 8, 238 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMSUniversité des Frères Mentouri Constantine 1ConstantineAlgeria
  2. 2.Département de Chimie, Faculté des Sciences et des Sciences AppliquéesUniversité Akli Mohand Oulhadj – BouiraBouiraAlgeria
  3. 3.Groupe des Matériaux Fonctionnels, Laboratoire LGMMUniversité 20 août 1955-SkikdaSkikdaAlgeria
  4. 4.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland

Personalised recommendations