Antireflection Films Based on Large-Area 2D Hollow SiO2 Spheres Monolayer Opals

  • Jianfeng Wang
  • Jianping Zhou
  • Kuqitaer Adelihan
  • Fenglei ShenEmail author
  • Hua LiEmail author


Hollow SiO2 spheres are synthesized by using various sizes of PS spheres as sacrified templates followed removal of the PS core by calcination. Large-area 2D monolayer SiO2 hollow spheres opals are fabricated through gas–liquid–solid interface self-assembly route base on core–shell PS@SiO2 as structural bricks which is a simple, fast and easily large-area-fabricated. In this route, proper ratio of alcohol to water plays important role on the synthesis of core–shell PS@SiO2 composite spheres while,the hydrophobic treatment of core–shell PS@SiO2 composite spheres is found primarily to realize opal films floating on water surface and further to be compacted into well ordered large monolayer films. Scanning electron microscopy and transmission electron microscopy demonstrate the obtained hollow SiO2 spheres opals are well dispersed and well-ordered into two dimensional arrays. ultraviolet–visible–near infrared (UV–vis–NIR) spectroscopy shows that transmission in visible light range increases with the added size of hollow SiO2 spheres. In contrast to solid SiO2 spheres opal, hollow SiO2 spheres opals demonstrates their improved transmission due to their high porosity.


Hollow silica Monolayer Large-area Opals Antireflection 



The financial support of National Natural Science Foundation of China (Grant #21301123), China Scholarship council, Priority Academic Program Development of Jiangsu Higher Education Insititutions are gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2018_966_MOESM1_ESM.pdf (826 kb)
Supplementary material 1 (PDF 826 KB)


  1. 1.
    B. Jin, J. He, L. Yao, Y. Zhang, J. Li, ACS Appl. Mater. Interfaces 9(20), 17466–17475 (2017)CrossRefGoogle Scholar
  2. 2.
    W. Glaubitt, A. Gombert, U.S. Patent 6,177,131[P], 23 Jan 2001Google Scholar
  3. 3.
    X. Du, J. He, J. Chem. 17(29), 8165–8174 (2011)CrossRefGoogle Scholar
  4. 4.
    W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. (2002). Google Scholar
  5. 5.
    Y. Hoshikawa, H. Yabe, A. Nomura, T. Yamaki, A. Shimojima, T. Okubo, Chem. Mater. 22(1), 12–14 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, M. Tao, Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009)CrossRefGoogle Scholar
  7. 7.
    S.R. And, S. Ravaine, Chem. Mater. 15(2), 598–605 (2003)CrossRefGoogle Scholar
  8. 8.
    X. Wu, Y. Tian, Y. Cui, L. Wei, Q. Wang, Y. Chen, J. Phys. Chem. C 111(27), 9704–9708 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Xu, He, J. Langmuir 28(19), 7512–7518 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Xu, L. Gao, J. He, RSC Adv. 2(33), 12764 (2012)CrossRefGoogle Scholar
  11. 11.
    P.B. Clapham, M.C. Hutley, Nature. 244(5414), 281–282 (1973)CrossRefGoogle Scholar
  12. 12.
    L. Yu, H. Hu, H.B. Wu, X.W. Lou, Adv. Mater. 29(15)2017)Google Scholar
  13. 13.
    J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Energy Environ. Sci. 6(7), 2082 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Kado, S. Yokomine, K. Kimura, Bull. Chem. Soc. Japan 90(5), 537–545 (2017)CrossRefGoogle Scholar
  15. 15.
    Q. Ji, X. Qiao, X. Liu, H. Jia, J.-S. Yu, K. Ariga, Bull. Chem. Soc. Japan 91(3), 391–397 (2018)CrossRefGoogle Scholar
  16. 16.
    L.-L. Xing, K.-J. Huang, S.-X. Cao, H. Pang, Chem. Eng. J. 332, 253–259 (2018)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, P. Lan, Y. Lu, J. Li, H. Xu, J. Zhang et al., ACS Appl. Mater. Interfaces 6(3), 1415–1423 (2014)CrossRefGoogle Scholar
  18. 18.
    X.-X. Zhang, S. Cai, D. You, L.-H. Yan, H.-B. Lv, X.-D. Yuan et al., Adv. Funct. Mater. 23(35), 4361–4365 (2013)CrossRefGoogle Scholar
  19. 19.
    N. Mizoshita, M. Ishii, N. Kato, H. Tanaka, Acs Appl. Mater. Interfaces 7(34):19424–19430 (2015)CrossRefGoogle Scholar
  20. 20.
    K.T. Cook, K.E. Tettey, R.M. Bunch, D. Lee, A.J. Nolte, Acs Appl. Mater. Interfaces 4(12), 6426 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Jin, J. He, ACS Photon. 4(1), 188–196 (2016)CrossRefGoogle Scholar
  22. 22.
    Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang et al., Appl. Phys. Lett. 94(26), 263118 (2009)CrossRefGoogle Scholar
  23. 23.
    G. Tan, I. Cheng, J.H. Lee, L.H. Peng, M.K. Wei, S.T. Wu et al., Optica 4(7), 678 (2017)CrossRefGoogle Scholar
  24. 24.
    J.W. Leem, Y.M. Song, J.S. Yu, Nanoscale 5(21), 10455–10460 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Peng, W. Lin, Y. Xing, K. Xu, G. Shuxi, R. Yuanyuan et al., Mater. Lett. 143, 1–4 (2015)CrossRefGoogle Scholar
  26. 26.
    D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. Biol. Sci. 273(1587), 661–667 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Wang, Y. Zhang, Y. Dong, L. Fu, Y. Bai, T. Li et al., Chem. Mater. 12(12), 3662–3666 (2000)CrossRefGoogle Scholar
  28. 28.
    N. Vogel, R.A. Belisle, B. Hatton, T.S. Wong, J. Aizenberg, Nat. Commun. 4, 2167 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Hattori, Adv. Mater. 13(1), 51–54 (2001)CrossRefGoogle Scholar
  30. 30.
    L. Yao, J. He, Z. Geng, T. Ren, Nanoscale 7(30), 13125–13134 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Du, L.E. Luna, W.S. Tan, M.F. Rubner, R.E. Cohen, Acs Nano 4(7), 4308 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Ji, J. Park, H. Lim, Nanoscale 4(15), 4603–4610 (2012)CrossRefGoogle Scholar
  33. 33.
    F. Galeotti, F. Trespidi, G. Timo, M. Pasini, ACS Appl. Mater. Interfaces 6(8), 5827–5834 (2014)CrossRefGoogle Scholar
  34. 34.
    J.G. Kim, H.J. Choi, K.C. Park, R.E. Cohen, G.H. Mckinley, G. Barbastathis, Small 10(12), 2487–2494 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.H. Ghymn, K. Jung, M. Shin, H. Ko, Nanoscale 7(44), 18642–18650 (2015)CrossRefGoogle Scholar
  36. 36.
    Z. Guo, H. Zhao, W. Zhao, T. Wang, D. Kong, T. Chen et al., ACS Appl. Mater. Interfaces 8(18), 11796–11805 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Jia, Z. Ji, H. Wang, R. Chen, Thin Solid Films 642, 174–181 (2017)CrossRefGoogle Scholar
  38. 38.
    L. Xu, Z. Geng, J. He, G. Zhou, ACS Appl. Mater. Interfaces 6(12), 9029–9035 (2014)CrossRefGoogle Scholar
  39. 39.
    X. Zou, C. Tao, L. Yan, F. Yang, H. Lv, H. Yan et al., Surf. Coat. Technol. 341, 57–63 (2018)CrossRefGoogle Scholar
  40. 40.
    A.S. Dimitrov, T. Miwa, K. Nagayama, Langmuir 15(16), 5257–5264 (1999)CrossRefGoogle Scholar
  41. 41.
    H. Li, J. Theriault, B. Rousselle, B. Subramanian, J. Robichaud, Y. Djaoued, Chem. Commun. (Camb) 50(17), 2184–2186 (2014)CrossRefGoogle Scholar
  42. 42.
    S.M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, M. Akinc, J. Appl. Phys. 83(12), 7860–7866 (1998)CrossRefGoogle Scholar
  43. 43.
    J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A.A.R. Watt et al., ACS Appl. Mater. Interfaces 4(2), 854–859 (2012)CrossRefGoogle Scholar
  44. 44.
    J.S. Metzman, G. Wang, J.R. Morris, J.R. Heflin, J. Mater. Chem. C 6(4), 823–835 (2018)CrossRefGoogle Scholar
  45. 45.
    H. Hattori, Adv. Mater. 13(1), 51–54 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Inorganic Materials, College of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouPeople’s Republic of China
  3. 3.Suzhou Shinwu Optronics Technology Co. Ltd.SuzhouPeople’s Republic of China

Personalised recommendations