Facile Hydrothermal Synthesis of WO3 Nanoconifer Thin Film: Multifunctional Behavior for Gas Sensing and Field Emission Applications

  • Pankaj S. Kolhe
  • Parisee S. Shirke
  • Namita Maiti
  • Mahendra A. More
  • Kishor M. Sonawane


Well aligned tungsten trioxide (WO3) nanoconifer films were synthesized on tungsten substrates employing a facile hydrothermal treatment. The structural properties of as-synthesized WO3 nanostructure thin films were confirmed by X-ray diffraction micro Raman spectroscopy, whereas surface morphology and elemental composition was revealed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Gas sensing characteristics of the WO3 nanoconifer thin film towards NH3 (ammonia) gas were investigated. The WO3 nanoconifer thin film exhibited maximum sensor response of ~ 51.9% for 300 ppm of NH3 at operating temperature of ~ 175 °C. Interestingly the response and recover times were observed to be 35 and 62 s respectively, which are superior to the reported ones. Further, field emission study of WO3 nanoconifer thin film was carried at the base pressure of ~ 1 × 10−8 mbar. The values of turn-on and threshold fields (corresponding to emission current densities of 1 and 10 µA cm−2) are found to be 2.43 and 3.08 V µm−1, respectively. The WO3 nanoconifer thin film emitter delivered maximum current density of ~ 118.57 µA cm−2 at an applied field of 4.29 V µm−1. The emission current was observed to be fairly stable over duration four hours at a preset value ~ 2 µA, characterized with standard deviation around 7.86%. The observed FE characteristics are comparable to other semiconducting metal oxide nanostructures thin film emitters. The present results imply WO3 nanoconifer as a promising candidate for potential applications in gas sensing as well as field emission based applications in vacuum microelectronic devices.


WO3 nanoconifers NH3 Hydrothermal Field electron emission Gas sensing 



Authors, gratefully acknowledges for financial support from BARC Mumbai, for the SRF award under DAE-BRNS (Board of Research in Nuclear Sciences) (Sanction No. 34/14/61/2014-BRNS) research project scheme. Also authors acknowledges to Fergusson College, Pune for providing research facility.


  1. 1.
    D.D. Nguyen, D.V. Dang, D.C. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 6(3), 035006 (2015)CrossRefGoogle Scholar
  2. 2.
    X. Liu, N. Chen, B. Han, X. Xiao, G. Chen, I. Djerdj, Y. Wang, Nanoscale 7(36), 14872–14880 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Timmer, W. Olthuis, A. Van Den Berg, Sens. Actuators B 107(2), 666–677 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Chakraborty, H.N. Petersen, C. Elkjær, A. Cagulada, T. Johannessen, Fuel Cells Bull. 10, 12–15 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Sens. Actuators B 239, 1051–1059 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Jolly Bose, N. Illyasukutty, K.S. Tan, R.S. Rawat, M. Vadakke Matham, H. Kohler, V.P. Mahadevan, Pillai, Appl. Surf. Sci. 440, 320–330 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.H. Lee, C.H. Choi, Y.T. Jang, E.K. Kim, B.K. Ju, N.K. Min, J.H. Ahn, Appl. Phys. Lett. 81(4), 745–747 (2002)CrossRefGoogle Scholar
  8. 8.
    D. Chen, J. Ye, Adv. Funct. Mater. 18(13), 1922–1928 (2008)CrossRefGoogle Scholar
  9. 9.
    W.J. Li, Z.W. Fu, Appl. Surf. Sci. 256(8), 2447–2452 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Godbole, A. Vedpathak, V. Godbole, S. Bhagwat, Mater. Res. Express 4(7), 076401 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Hübner, C.E. Simion, A. Haensch, N. Barsan, U. Weimar, Sens. Actuators B 151(1), 103–106 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Davazoglou, T. Dritsas, Sens. Actuators B 77(1–2), 359–362 (2001)CrossRefGoogle Scholar
  13. 13.
    M. Stankova, X. Vilanova, J. Calderer, E. Llobet, P. Ivanov, I. Gràcia, C. Cané, X. Correig, Sens. Actuators B 102(2), 219–225 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Tesfamichael, C. Piloto, M. Arita, J. Bell, Sens. Actuators B 221, 393–400 (2015)CrossRefGoogle Scholar
  15. 15.
    Z. Liu, M. Miyauchi, T. Yamazaki, Y. Shen, Sens. Actuators B 140(2), 514–519 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Zhou, J. Zou, M. Yu, P. Lu, J. Wei, Y. Qian, Y. Wang, C. Yu, Cryst. Growth Des. 8(11), 3993–3998 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Nanoscale 4(22), 7078–7083 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, X. Correig, Chem. Commun. 47(1), 565–567 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, Sens. Actuators B 238, 473–481 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Van Hieu, V. Van Quang, N.D. Hoa, D. Kim, Curr. Appl. Phys. 11(3), 657–661 (2011)CrossRefGoogle Scholar
  21. 21.
    S.S. Warule, N.S. Chaudhari, J.D. Ambekar, B.B. Kale, M.A. More, ACS Appl. Mater. Interfaces 3(9), 3454–3462 (2011)CrossRefGoogle Scholar
  22. 22.
    M.S. Pawar, P.K. Bankar, M.A. More, D.J. Late, RSC Adv. 5(108), 88796–88804 (2015)CrossRefGoogle Scholar
  23. 23.
    W.A. De Heer, A. Chatelain, D. Ugarte, Science 270(5239), 1179–1180 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Anderson, Spectro. Lett. 9(11), 809–819 (1976)CrossRefGoogle Scholar
  25. 25.
    F. Liu, X. Chen, Q. Xia, L. Tian, X. Chen, RSC Adv. 5(94), 77423–77428 (2015)CrossRefGoogle Scholar
  26. 26.
    T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, Sens. Actuators B 133(1), 321–326 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Senthil, K. Yong, Nanotechnology 18(39), 395604 (2007)CrossRefGoogle Scholar
  28. 28.
    G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne, J. Solid State Chem. 162(2), 300–314 (2001)CrossRefGoogle Scholar
  29. 29.
    S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, J. Mater. Chem. 22(25), 12643–12650 (2012)CrossRefGoogle Scholar
  30. 30.
    W. Ya-Qiao, H. Ming, W. Xiao-Ying, Chin. Phys. B 23(4), 040704 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Nordheim, Proc. R. Soc. Lond. A 119(781), 173–181 (1928)CrossRefGoogle Scholar
  32. 32.
    A.A. Al-Tabbakh, M.A. More, D.S. Joag, I.S. Mulla, V.K. Pillai, ACS Nano 4(10), 5585–5590 (2010)CrossRefGoogle Scholar
  33. 33.
    K.K. Naik, R. Khare, D. Chakravarty, M.A. More, R. Thapa, D.J. Late, C.S. Rout, Appl. Phys. Lett. 105(23), 233101 (2014)CrossRefGoogle Scholar
  34. 34.
    S.R. Suryawanshi, P.K. Bankar, M.A. More, D.J. Late, RSC Adv. 5(80), 65274–65282 (2015)CrossRefGoogle Scholar
  35. 35.
    S.R. Suryawanshi, P.S. Kolhe, C.S. Rout, D.J. Late, M.A. More, Ultramicro 149, 51–57 (2015)CrossRefGoogle Scholar
  36. 36.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81(19), 3648–3650 (2002)CrossRefGoogle Scholar
  37. 37.
    Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16(1), 88Google Scholar
  38. 38.
    B. Varghese, C.H. Teo, Y. Zhu, M.V. Reddy, B.V. Chowdari, A.T.S. Wee, V.B.C. Tan, C.T. Lim, C.H. Sow, Adv. Funct. Mater. 17(12), 1932–1939 (2007)CrossRefGoogle Scholar
  39. 39.
    J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, E. Wang, Small 1(3), 310–313 (2005)CrossRefGoogle Scholar
  40. 40.
    J. Liu, Z. Zhang, C. Pan, Y. Zhao, X. Su, Y. Zhou, D. Yu, Mater. Lett. 58(29), 3812–3815 (2004)CrossRefGoogle Scholar
  41. 41.
    J.M. Wu, H.C. Shih, W.T. Wu, Chem. Phys. Lett. 413(4–6), 490–494 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsFergusson College Affiliated to Savitribai Phule Pune UniversityPuneIndia
  2. 2.Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter PhysicsSavitribai Phule Pune UniversityPuneIndia
  3. 3.Laser and Plasma Technology DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia

Personalised recommendations