Advertisement

Facile and Rapid Preparation of ZnO Nanomaterials with Different Morphologies and Superficial Structures for Enhanced Ethanol-Sensing Performances

  • Xiao-Xu Song
  • Huifen Fu
  • Xiangjie Li
  • Xiao-Hong Yi
  • Hong-Yu Chu
  • Chong-Chen WangEmail author
Article
  • 45 Downloads

Abstract

A facile, rapid and environmental-friendly method was developed to prepare ZnO with different morphologies and superficial structures just using Zn(NO3)2 and hexamethylenetetramine (HMTA) as precursors by tuning nucleation rate. Rod-like ZnO-1 and ZnO-5, and irregular ZnO-10 and ZnO-20 were obtained as the amounts of the used reagents are 1, 5, 10 and 20 mmol, respectively. Compared to ZnO-1, the responses of ZnO-5, ZnO-10 and ZnO-20 toward ethanol were improved greatly, which could be attributed to their alternative active adsorbed oxygen species (O2−/O for ZnO-5, ZnO-10 and ZnO-20, O2− for ZnO-1). It was proposed that the different active adsorbed oxygen species might result from the different activation of ethanol with the aid of ZnO. The response of ZnO-10 toward 50 ppm ethanol is 115, about five times higher than that of ZnO-1, and the best gas-sensing performance of ZnO-10 was deemed to result from its largest specific surface area and highest percentage of adsorbed oxygen.

Keywords

ZnO Nanomaterials Gas sensor Morphology Active oxygen species 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51578034), Beijing Postdoctoral Research Foundation, Great Wall Scholars Training Program Project of Beijing Municipality Universities (CIT&TCD20180323), Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20170508), Beijing Talent Project (2017A38), Scientific Research Foundation of Beijing University of Civil Engineering and Architecture (KYJJ2017008), and the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (X18276).

References

  1. 1.
    L. Zhu, W. Zeng, Sens. Actuator A-Phys. 267, 242–261 (2017)CrossRefGoogle Scholar
  2. 2.
    J.-W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.-M. Myoung, ACS Appl. Mater. Interfaces 9, 32876–32886 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Wu, Z. Wang, M. Tian, J. Miao, H. Zhang, J. Sun, Sens. Actuator. B-Chem. 259, 526–531 (2018)CrossRefGoogle Scholar
  4. 4.
    B.L. Zhu, C.S. Xie, A.H. Wang, J. Wu, R. Wu, J. Liu, J. Mater. Sci. 42, 5416–5420 (2007)CrossRefGoogle Scholar
  5. 5.
    X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S.D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, T.-S. Lin, J. Am. Chem. Soc. 134, 10251–10258 (2012)CrossRefGoogle Scholar
  6. 6.
    D.D. Thongam, J. Gupta, N.K. Sahu, D. Bahadur, J. Mater. Sci. 53, 1110–1122 (2018)CrossRefGoogle Scholar
  7. 7.
    H.-M. Xiong, Y. Xu, Q.-G. Ren, Y.-Y. Xia, J. Am. Chem. Soc. 130, 7522–7523 (2008)CrossRefGoogle Scholar
  8. 8.
    H.-M. Xiong, J. Mater. Chem. 20, 4251–4262 (2010)CrossRefGoogle Scholar
  9. 9.
    A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183–2187 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar, M.S. Akhta, J. Mater. Sci. 52, 4743–4795 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Xue, Z. Cheng, J. Xu, Q. Xiang, X. Wang, J. Xu, ACS Appl. Mater. Interfaces 9, 41559–41567 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Wang, T. Shi, W. Zhu, G. Liao, X. Li, J. Huang, T. Zhou, Z. Tang, Sens. Actuator. B-Chem. 245, 821–827 (2017)CrossRefGoogle Scholar
  13. 13.
    N.L. Tarwal, A.V. Rajgure, J.Y. Patil, M.S. Khandekar, S.S. Suryavanshi, P.S. Patil, M.G. Gang, J.H. Kim, J.H. Jang, J. Mater. Sci. 48, 7274–7282 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, Sens. Actuator. B-Chem. 162, 237–243 (2012)CrossRefGoogle Scholar
  15. 15.
    P.P. Sahay, J. Mater. Sci. 40, 4383–4385 (2005)CrossRefGoogle Scholar
  16. 16.
    S.-M. Li, L.-X. Zhang, M.-Y. Zhu, G.-J. Ji, L.-X. Zhao, J. Yin, L.-J. Bie, Sens. Actuator. B-Chem. 249, 611–623 (2017)CrossRefGoogle Scholar
  17. 17.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Yang, Z. Guo, J. Colloid Interface Sci. 462, 140–147 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, J. Xue, D. Han, F. Gu, ACS Appl. Mater. Inter. 7, 308–317 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Qi, J. Chang, X. Han, R. Zhong, M. Jiang, Z. Chen, B. Liu, Mater. Chem. Phys. 211, 168–171 (2018)CrossRefGoogle Scholar
  21. 21.
    M.-H. Jung, M.-J. Chu, J. Mater. Chem. C 2, 6675–6682 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Xie, A. Centeno, B. Zou, M.P. Ryan, D.J. Riley, N.M. Alford, J. Colloid Interface. Sci. 395, 85–90 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Shi, M. Wang, C. Hong, Z. Yang, J. Deng, X. Song, L. Wang, J. Shao, H. Liu, Y. Ding, Sens. Actuator B-Chem. 177, 1027–1034 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, Q. Chai, X. Zhou, Sens. Actuator B-Chem. 158, 9–16 (2011)CrossRefGoogle Scholar
  25. 25.
    F. Gu, D. You, Z. Wang, D. Han, G. Guo, Sens. Actuator B-Chem. 204, 342–350 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Gu, L. Zhang, Z. Wang, D. Han, G. Guo, Sens. Actuator B-Chem. 193, 669–678 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Qi, K. Chen, Y. Xing, H. Fan, H. Zhao, J. Yang, L. Li, B. Yan, J. Zhou, L. Guo, S. Yang, Nanoscale 10, 7440–7450 (2018)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, Z. Tian, D. Han, F. Gu, ACS Appl. Mater. Interfaces 8, 5466–5474 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Liu, Y. Sun, M. Yu, Y. Yin, B. Du, W. Tang, T. Jiang, B. Yang, W. Cao, M.N.R. Ashfold, Sens. Actuator B-Chem. 255, 3384–3390 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Sens. Actuator B-Chem. 245, 551–559 (2017)CrossRefGoogle Scholar
  31. 31.
    F. Gu, R. Nie, Z. Tian, D. Han, Z. Wang, RSC Adv. 5, 99018–99022 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Zhang, F. Gu, D. Han, Z. Wang, G. Guo, Sens. Actuator B-Chem. 177, 1180–1188 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Wei, S. Wang, Y. Zhang, M. Zhou, Sens. Actuator B-Chem. 192, 480–487 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, ACS Sens. 1, 131–136 (2015) (2016)CrossRefGoogle Scholar
  35. 35.
    S. Park, S. Kim, G.J. Sun, C. Lee, ACS Appl. Mater. Interfaces 7, 8138–8146 (2015)CrossRefGoogle Scholar
  36. 36.
    D. Wang, Y. Zhen, G. Xue, F. Fu, X. Liu, D. Li, J. Mater. Chem. C 1, 4153–4162 (2013)CrossRefGoogle Scholar
  37. 37.
    T. Chen, H.-I. Chen, C.-S. Hsu, C.-C. Huang, J.-S. Wu, P.-C. Chou, W.-C. Liu, Sens. Actuator B-Chem. 221, 491–498 (2015)CrossRefGoogle Scholar
  38. 38.
    H.B. Huang, D.Y.C. Leung, D.Q. Ye, J. Mater. Chem. 21, 9647–9652 (2011)CrossRefGoogle Scholar
  39. 39.
    X.W. Li, X. Zhou, H. Guo, C. Wang, J.Y. Liu, P. Sun, F.M. Liu, G. Lu, ACS Appl. Mater. Interfaces 6, 18661–18667 (2014)CrossRefGoogle Scholar
  40. 40.
    B. Gong, T. Shi, G. Liao, X. Li, J. Huang, T. Zhou, Z. Tang, Sens. Actuator. B-Chem. 245, 821–827 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Choi, M. Bonyani, G.-J. Sun, J.K. Lee, S.K. Hyun, C. Lee, Appl. Surf. Sci. 432, 241–249 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Xu Song
    • 1
  • Huifen Fu
    • 1
  • Xiangjie Li
    • 1
  • Xiao-Hong Yi
    • 1
  • Hong-Yu Chu
    • 1
  • Chong-Chen Wang
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations