Copper(II)–Humic Acid Adsorption Process Using Microporous-Zeolite Na-X

  • Karima MenadEmail author
  • Ahmed Feddag
  • Tālis Juhna


There is a need to develop effective and inexpensive methods for removal of heavy metals from contaminated water in developing countries. In this study, a novel microporous, microcrystalline, zeolite-type X high silica (NaX-500) sorbent was synthesized using hydrothermal method followed by calcination at 500 °C. Its sorption capacity to remove Cu(II) was tested in reconstituted water with and without humic acid (HA). Fourier transform infrared spectroscopy, chemical elemental composition, scanning electron microscopy, N2 adsorption–desorption measurement and X-ray diffraction analyses confirmed that NaX-500 has a micro-crystalline structure with micrometer-sized pores and a specific area of about 336 m2/g. The results showed that sorption of Cu(II) below 20 mg/L was described by pseudo-first-order kinetic model and above 500 mg/L by the second order model, whereas Dubinin–Radushkevich model (for all cases R2 values > 0.810) described best the sorption of copper(II) on NaX-500. The presence of HA was found to influence the adsorption efficiency as copper formed a complex with zeolite–HA, thus improving the adsorption capacities. This study shows that, the newly developed material is rapid and effective for the removal of copper from contaminated water both at low and moderate concentrations including from water with moderate concentration of humic substances.


Copper(II) Microporous Sorption Zeolite type X 



Corresponding author is thankful to Dr. A. FEDDAG, MCA, Mostaganem University and Prof. T. JUHNA, Director, Water Research laboratory, Riga Technical University for constant encouragement and providing infrastructure.


  1. 1.
    M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72, 2014CrossRefGoogle Scholar
  2. 2.
    S. Chowdhury, M.A.J. Mazumder, O. Al-attas, T. Husain, Science of the total environment heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569–570, 476–488 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y. Han, J. Yang, L. Zhu, W. Zhong, Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J. Environ. Sci. 62, 31–38 (2017)CrossRefGoogle Scholar
  4. 4.
    R.B. Suami et al., Concentration of heavy metals in edible fishes from Atlantic Coast of Muanda, Democratic Republic of the Congo. J. Food Compos. Anal. 73, 1–9 (2018)CrossRefGoogle Scholar
  5. 5.
    N.A. Fakhre, B.M. Ibrahim, The use of new chemically modified cellulose for heavy metal ion adsorption. J. Hazard. Mater. 343, 324–331 (2018)CrossRefGoogle Scholar
  6. 6.
    I.M. Kenawy, M.A.H. Hafez, M.A. Ismail, M.A. Hashem, Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 107, 1538–1549 (2018)CrossRefGoogle Scholar
  7. 7.
    T.S. Anirudhan, P.S. Suchithra, Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper(II) ions from aqueous solutions and electroplating industry wastewater. J. Ind. Eng. Chem. 16(1), 130–139 (2010)CrossRefGoogle Scholar
  8. 8.
    Ö Gök, A. Özcan, B. Erdem, A.S. Özcan, Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxy quinoline immobilized bentonite. Colloids Surf. A 317(1–3), 174–185 (2008)CrossRefGoogle Scholar
  9. 9.
    S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147(3), 792–799 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Chen, G. Dai, J. Zhao, A. Zhong, J. Wu, H. Yan, Removal of copper(II) ions by a biosorbent-Cinnamomum camphora leaves powder. J. Hazard. Mater. 177(1–3), 228–236 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Hao, L. Ji, C. Li, C. Hu, K. Wu, Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. Eng. 88, 137–145 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Yogeshwaran, A. Priya, Removal of hexavalent chromium by adsorption using natural wastes-a review. Adv. Recycl. Waste Manag. 2(4), 4–6 (2017)Google Scholar
  13. 13.
    M.A. Renu, K. Singh, S. Upadhyaya, R.K. Dohare, Removal of heavy metals from wastewater using modified agricultural adsorbents. Mater. Today Proc. 4(9), 10534–10538, 2017CrossRefGoogle Scholar
  14. 14.
    Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock. J. Hazard. Mater. 156(1–3), 412–420 (2008)CrossRefGoogle Scholar
  15. 15.
    E. Kaprara et al., Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. J. Hazard. Mater. 262, 606–613 (2013)CrossRefGoogle Scholar
  16. 16.
    I. Aloma, M.A. Martin-Lara, I.L. Rodriguez, G. Blazquez, M. Calero, Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 43(2), 275–281 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Yin, J. Zhu, In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chem. Eng. J. 285, 112–120 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Ghasemi, H. Javadian, N. Ghasemi, S. Agarwal, V.K. Gupta, Microporous nanocrystalline NaA zeolite prepared by microwave assisted hydrothermal method and determination of kinetic, isotherm and thermodynamic parameters of the batch sorption of Ni (II). J. Mol. Liq. 215, 161–169 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Arancibia-Miranda et al., Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 301, 371–380 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Kong, Z. Han, W. Zhang, L. Song, H. Li, Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr 6þ and Cd 2þ from aqueous solution. J. Environ. Manag. 169, 84–90 (2016)CrossRefGoogle Scholar
  21. 21.
    O.O. Ltaief, S. Siffert, S. Fourmentin, M. Benzina, Synthesis of Faujasite type zeolite from low grade Tunisian clay for the removal of heavy metals from aqueous waste by batch process: kinetic and equilibrium study ` partir d’ une argile commune ` se d’ une ze ´ olithe de type faujasite a ´ limination. C. R. Chim. 18, 1123–1133 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, D. Tong, J. Zhao, X. Li, Synthesis of NaX zeolite at room temperature and its characterization. Mater. Lett. 104, 80–83 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Han et al., Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem. Eng. J. 149, 123–131 (2009)CrossRefGoogle Scholar
  24. 24.
    K. Menad, A. Feddag, M. Abd, E. Hasnaoui, A. Elkader, Synthesis and modification by ion exchange of the composite core-shell. J. Sci. Innov. Res. 3(4), 419–425 (2014)Google Scholar
  25. 25.
    Y. Bouizi, Micro-composites formed a continuous layer of zeolite covering a core zeolite-study training process, in Thesis, pp. 6, 12, 39 (2005)Google Scholar
  26. 26.
    M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (Elsevier, London, 2001), pp. 11–15Google Scholar
  27. 27.
    H. Tanaka, A. Fujii, Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process. Adv. Powder Technol. 20(5), 473–479 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Nibou, H. Mekatel, S. Amokrane, M. Barkat, M. Trari, Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard. Mater. 173(1–3), 637–646 (2010)CrossRefGoogle Scholar
  29. 29.
    V. Ndira, Substances humiques du sol et du compost: analyse elementaire et groupements atomiques fictifs: vers une approche thermodynamique (2006)Google Scholar
  30. 30.
    Y. Zhan, Z. Zhu, J. Lin, Y. Qiu, J. Zhao, Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. J. Environ. Sci. 22(9), 1327–1334 (2010)CrossRefGoogle Scholar
  31. 31.
    S.V. Mohan, J. Karthikeyan, Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 97(1–2), 183–187 (1997)CrossRefGoogle Scholar
  32. 32.
    A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146(1–2), 362–371 (2007)CrossRefGoogle Scholar
  34. 34.
    G. Asgari, B. Roshani, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard. Mater. 217–218, 123–132 (2012)CrossRefGoogle Scholar
  35. 35.
    H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)CrossRefGoogle Scholar
  36. 36.
    I. Kuźniarska-Biernacka, A.M. Fonseca, I.C. Neves, Manganese complexes with triazenido ligands encapsulated in NaY zeolite as heterogeneous catalysts. Inorg. Chim. Acta 394, 591–597 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Lin, Y. Zhan, Z. Zhu, Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids Surf. A 384, 9–16 (2011)CrossRefGoogle Scholar
  38. 38.
    T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 270, 393–404 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Wang, L. Lippincott, I. Yoon, X. Meng, Modeling, rate-limiting step investigation, and enhancement of the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Res. 43(1), 127–136 (2009)CrossRefGoogle Scholar
  40. 40.
    S. Wang, T. Terdkiatburana, M.O. Tadé, Single and co-adsorption of heavy metals and humic acid on fly ash. Sep. Purif. Technol. 58(3), 353–358 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2(1), 398–414 (2014)CrossRefGoogle Scholar
  42. 42.
    W.S.W. Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manag. 91(4), 958–969 (2010)CrossRefGoogle Scholar
  43. 43.
    J.P. Hobson, Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. J. Phys. Chem. 309(22), 2720–2727 (1969)CrossRefGoogle Scholar
  44. 44.
    M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Technology and Properties of Solids, Process Engineering DepartmentAbdelhamid Ibn Badis University- MostaganemMostaganemAlgeria
  2. 2.Water Research LaboratoryRiga Technical UniversityRigaLatvia

Personalised recommendations