Molecular Modeling Evaluation of Silicon/Polyaniline/ZnO Nanocomposite

  • Naziha Suliman AlghunaimEmail author


Aniline is subjected to molecular modeling calculations at three levels namely HF/3-21G**, B3LYP/3-21G** and B3LYP/6-31G(d,p). According to the comparison between theoretically calculated vibrational spectra at each level and FTIR experimental spectra, results indicated that the B3LYP/3-21G** and B3LYP/6-31G(d,p) results are comparable, and that B3LYP/3-21G** results were obtained in a reasonable computational time. Polyaniline is then supposed to be put up on silicon substrate and decorated with 3 ZnO molecules to form silicon/polyaniline emeraldine base/3ZnO nanocomposite. Molecular electrostatic potential (ESP) showed uniform distribution, which changes as far as this nanocomposite is interacting with natural gas molecules. Another change is indicated in the total dipole moment (TDM) and HOMO/LUMO band gap energy as the polyaniline nanocomposite interacts with natural gas. The change in the physical properties of the studied nanocomposite dedicated it as sensor for natural gas.


Polyaniline emeraldine base ESP TDM HF/3-21G** B3LYP/3-21G** B3LYP/6-31G(d,p) 


  1. 1.
    I. György, Introduction, ed. by Scholz, F., Conducting Polymers: A New Era in Electrochemistry. Monographs in Electrochemistry (Springer, New York, 2008), pp. 1–6Google Scholar
  2. 2.
    T. Kahl, K.-W. Schröder, F.R. Lawrence, W.J. Marshall, Hartmut Höke, Rudolf Jäckh “Aniline” in Ullmann’s Encyclopedia of Industrial Chemistry (2007), Wiley, New YorkGoogle Scholar
  3. 3.
    N. Herbert, Polymers, electrically conducting, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, New York, 2000)Google Scholar
  4. 4.
    J. Chiang, A.G. MacDiarmid, Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)CrossRefGoogle Scholar
  5. 5.
    K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2, 2164–2170 (2010)CrossRefGoogle Scholar
  7. 7.
    P.J. Hung, K.H. Chang, Y.F. Lee, C.C. Hu, andK.M. Lin, Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochim. Acta 55, 6015–6021 (2010)CrossRefGoogle Scholar
  8. 8.
    S.A. El-Khodary, G.M. El-Enany, M. El-Okr, M. Ibrahim, Modified iron doped polyaniline/sulfonated carbon nanotubes for all symmetric solid-state supercapacitor. Synth. Met. 233, 41–51 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Karthikeyan, S. Amaresh, V. Aravindan, Li(Mn1/3Ni1/3Fe1/3)O2-polyaniline hybrids as cathode active material with ultra-fast chargedischarge capability for lithium batteries. J. Power Sources 232, 240–245 (2013)CrossRefGoogle Scholar
  10. 10.
    A.W. Marsman, C.M. Hart, G.H. Gelinck, T.C.T. Geuns, D.M. De Leeuw, Doped polyaniline polymer fuses: electrically programmable read-only-memory elements. J. Mater. Res. 19, 2057–2060 (2004)CrossRefGoogle Scholar
  11. 11.
    C.W. Wang, Z. Wang, M.K. Li, H.L. Li, Well-allgined polyaniline nano-fibrilarray membrane and its field emission property. Chem.Phys. Lett 341, 431–434 (2001)CrossRefGoogle Scholar
  12. 12.
    S.M. Yang, K.H. Chen, Y.F. Yang, Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane. Synth. Met. 152, 65–68 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Zh, V.G. Boeva, Sergeyev, Polyaniline: synthesis, properties, and application. Vysokomolekulyarnye Soedineniya. Ser. C 56, 153–164 (2014)Google Scholar
  14. 14.
    F. Gao, Y. Cheng, L. An, R. Tan, X. Li, G. Wang, Polyaniline nanotube-ZnO composite materials: facile synthesis and application. J. Wuhan Univ. Technol. 30, 1147–1151 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Mostafae, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. 22, 273–280 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Joubert, M. Bouhadid, D. Begue, Conducting polyaniline composite: from syntheses in waterborne systems to chemical sensor devices. Polymer 51, 1716–1722 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B 191, 276–282 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Omara, R. Amin, H. Elhaes, M. Ibrahim, S.A. Elfeky, Preparation and characterization of novel polyaniline nanosensor for sensitive detection of formaldehyde. Recent Patents Nanotechnol. 9, 195–203 (2015)CrossRefGoogle Scholar
  19. 19.
    M.Ibrahim, and E. Koglin, Spectroscopic study of polyaniline emeraldine base: modelling approach. Acta Chim. Slov. 52, 159–163 (2005)Google Scholar
  20. 20.
    A.S. Rad, P. Valipour, Interaction of methanol with some aniline and pyrrole derivatives: DFT calculations. Synth. Met. 209, 502–511 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. J. Mater. Chem. A 4, 5654–5662 (2016)CrossRefGoogle Scholar
  22. 22.
    M.M. El-Deeb, H.M. Alshammari, S. Abdel-Azeim, Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution. Can. J. Chem. 95, 612–619 (2017)CrossRefGoogle Scholar
  23. 23.
    T.A. Klimova, V.V. .Bochkarev, L.S. Soroka, Modeling of the aniline with nitrobenzene reaction by PM6 method. Proc. Chem. 10, 58–63 (2014)CrossRefGoogle Scholar
  24. 24.
    K. Petrushenko, K.B. Petrushenko, Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method. Spectrochim. Acta A 190, 239–245 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, Y. Duan, J. Liu, Time-dependent density functional theory study on the excited-state hydrogen-bonding characteristics of polyaniline in aqueous environment. Spectrochim. Acta A 171, 305–310 (2017)CrossRefGoogle Scholar
  26. 26.
    Gaussian 09, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels,O. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.B. Fox, Gaussian Inc., Wallingford, 2010Google Scholar
  27. 27.
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. Chem. Phys. 98, 5648–5652 (1993)Google Scholar
  28. 28.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988)CrossRefGoogle Scholar
  29. 29.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157(3), 200–206 (1989)CrossRefGoogle Scholar
  30. 30.
    J.P. Stewart, Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Mod. 13, 1173–1213 (2007)CrossRefGoogle Scholar
  31. 31.
    J.P. Stewart, MO-G Version 1. 1A (Fujitsu Limited, Tokyo, 2008)Google Scholar
  32. 32.
    E. Ilic, A. Koglin, H.D. Pholmeier, Narres, M.J. Schwuger, Adsorption and polymerization of aniline on Cu(II)-montmorillonite: vibrational spectroscopy and ab initio calculation. Langmuir 16, 8946–8951 (2000)CrossRefGoogle Scholar
  33. 33.
    P. Politzer, J.S. Murray, Z. Peralata-Inga, Molecular surface electrostatic potentialsin relation to noncovalent interactions in biological systems. Int. J. Quantum Chem. 85(4), 676–668 (2001)CrossRefGoogle Scholar
  34. 34.
    P. Politzer, J.S. Murray, Molecular electrostatic potentials: concepts and applications. J. Theor. Comput. Chem 3, 649–660 (1996)CrossRefGoogle Scholar
  35. 35.
    Z.S. Şahin, H.I. Şenöz, H. Tezcan, O. Büyükgüngör, Synthesis, spectral analysis, structural elucidation and quantum chemical studies of (E)-methyl-4-[(2-phenylhydrazono)methyl]benzoate. Spectrochim. Acta A 143, 91–100 (2015)CrossRefGoogle Scholar
  36. 36.
    B.K. Sharma, A. K.Gupta, N. Khare, S.K. Dhawan, H.C. Gupta, Synthesis and characterization of polyaniline—ZnO composite and its dielectric behavior. Synth. Met. 159, 391–395 (2009)CrossRefGoogle Scholar
  37. 37.
    H. Ibrahim, El-Haes, Computational spectroscopic study of copper, cadmium, lead and zinc interactions in the environment. Int. J. Environ. Pollut. 23(4), 417–424 (2005)CrossRefGoogle Scholar
  38. 38.
    A.-A. Ibrahim, Mahmoud, Computational notes on the reactivity of some functional groups. J. Comput. Theor. Nanosci. 6, 1523–1526 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations