Sulfur Doped Lead Monoxide Superfine Powder Materials: Solid-State Synthesis, Characterization, Adsorption and Photocatalytic Property of Methylene Blue

  • Liu Shao-youEmail author
  • Chen Yuan-dao
  • Qiu Tao-yu
  • Ou Li-hui
  • Zuo Cheng-gang
  • Feng Qing-ge


Sulfur doped lead monoxide (S–PbO) superfine powder materials with high visible light-driven activity were successfully prepared by a simple solid-state reaction method at low temperature using sodium dodecyl benzene sulfonate (SDBS) as a template. The samples were characterized by X-ray powder diffraction, high resolution transmission electron microscopy/energy-dispersive X-ray spectroscopy, UV–Vis absorption spectra, infrared spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption–desorption. The effect of feed ratio on the microstructure of materials, the doping mechanism of sulfur and the adsorption mechanism of methylene blue (MB) on the material surface were discussed. In addition, the intrinsic relationships among the material structure parameters, the photocatalytic degradation of MB under visible light irradiation and the stability of materials were investigated. The results show that the S element is successfully incorporated into the (111) crystal plane of the orthorhombic β-PbO lattice as a S(IV) and S(VI) at the assistance of SDBS. The content of sulfur has a certain regulatory effect on the energy gap of the orthorhombic PbO, and there is a positive correlation among the photocatalytic property of MB, the content of sulfur, and the lattice spacing of (111) and (310) crystal plane. The adsorption of MB mainly depends on the interaction between the surface active sites (S–O bond) and hydroxyl groups, and the adsorption relaxation time under different sulfur content. Under visible-light irradiation at room temperature within 60 min, the photocatalytic degradation (wt%) rate of MB (C0 = 50 mg/L) follows an order of S–PbO(S:Pb = 0.05:0.95) (97.8%) > S–PbO(S:Pb = 0.10:0.90) (90.6%) > S–PbO(S:Pb = 0.15:0.85) (83.5%) > S–PbO(S:Pb = 0.20:0.80) (72.3%) > PbO (48.2%). The holes (h+) and hydroxyl radicals (·OH) are the main active species during the photodegradation of MB solution for the S-doped PbO materials. The S-doped PbO materials are of a p-type indirect semiconductor, and the loss of lead is very little in the MB solution, it is feasible to the S-doped PbO powder materials as photocatalysts.


S-Doped lead monoxide Solid-state reaction Photocatalysis Methylene blue Stability 



This project was supported by Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Economic Zone, China; the Key Research Project of Education Department of Hunan Province (17A145), China; and the Research Project of Hunan University of Arts and Science Doctoral Research Foundation (E3127), China.


  1. 1.
    M.M. Amini, E. Najafi, A. Dehghani, S.W. Ng, Structure and optical properties of new lead(II) coordination polymers and PbO nanoparticles core of polymer. J. Mol. Struct. 1083, 221–228 (2015)CrossRefGoogle Scholar
  2. 2.
    L.P. Zhang, F. Guo, X. Liu, J. Cui, Y.T. Qian, Metastable PbO crystal grown through alcohol-thermal process. J. Cryst. Growth 280, 575–580 (2005)CrossRefGoogle Scholar
  3. 3.
    J.C. Schottmiller, Photoconductivity in tetragonal and orthorhombic lead monoxide layers. J. Appl. Phys. 37, 3505–3510 (1966)CrossRefGoogle Scholar
  4. 4.
    P. Veluchamy, M. Sharon, M. Shimizu, H. Minoura, Composition and photoactivity of lead oxide film prepared on a Pb electrode in the Pb/PbO potential region in 0.1 M NaOH + 0.1 M Na2SO4 at 80 °C. J. Electroanal. Chem. 365, 179–183 (1994)CrossRefGoogle Scholar
  5. 5.
    S. Ghasemi, M.F. Mousavi, M. Shamsipur, H. Karami, Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason. Sonochem. 15, 448–455 (2008)CrossRefGoogle Scholar
  6. 6.
    B.S. Zou, V.V. Volkov, Z.L. Wang, Optical properties of amorphous ZnO, CdO and PdO nanoclusters in solution. Chem. Mater. 11, 3037–3043 (1999)CrossRefGoogle Scholar
  7. 7.
    N. Mythili, K.T. Arulmozhi, S. Sheik Fareed, A comparative study: on the properties of PbO–SiO2 glass systems synthesized via different routes. Optik 127, 10817–10824 (2016)CrossRefGoogle Scholar
  8. 8.
    A.V. Borhade, B.K. Uphade, D.R. Tope, PbO as an efficient and reusable catalyst for one-pot synthesis of tetrahydro benzo yrans and benzylidene malonitriles. J. Chem. Sci. 125, 583–589 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Ghaedi, A.M. Ghaedi, B. Mirtamizdoust, S. Agarwal, V. Kumar Gupta, Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application for methyl orange removal from aqueous phase. J. Mol. Liq. 213, 48–57 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron 28, 2263–2267 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Haddadian, A. Aslani, A. Morsali, Syntheses of PbO nanopowders using new nanostructured lead(II) coordination polymers. Inorg. Chimi. Acta 362, 1805–1809 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Xi, Y. Peng, L. Xu, M. Zhang, W. Yu, Y. Qian, Selected-control synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes. Inorg. Chem. Commun. 7, 607–610 (2004)CrossRefGoogle Scholar
  13. 13.
    K.C. Chen, C.W. Wang, Y.I. Lee, H.G. Liu, Nanoplates and nanostars of β-PbO formed at the air/water interface. Colloids Surf. A 373, 124 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Cortez-Valadez, A. Vargas-Ortiz, L. Rojas-Blanco, H. Arizpe-Chávez, M. Flores-Acosta, R. Ramírez-Bon, Additional active Raman modes in α-PbO nanoplates. Physica E 53, 146–149 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Mythili, K.T. Arulmozhi, A comparative study on the structural and optical properties of PbO and Zn doped PbO nanocrystals. J. Mater. Sci. Mater. Electron. 25, 3984–3989 (2014)CrossRefGoogle Scholar
  16. 16.
    M.M. Kashani-Motlagh, M.K. Mahmoudabad, Synthesis and characterization of lead oxide nanopowders by sol-gel method. J. Sol-Gel. Sci. Technol. 59, 106–110 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Wojty, W. Macyk, T. Baran, Photosensitization of CuI-the role of visible light induced CuI→CuII transition in photocatalytic degradation of organic pollutants and inactivation of microorganisms. Photochem. Photobiol. Sci. 16, 1079–1087 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Xiao, Y. Liu, Q. Chao, F.H. Liu, L. Zhao, K.Z. Shao, Z.M. Su, POM-based inorganic-organic hybrid compounds: synthesis, structures, high-connected topologies and photodegradation of Organic dyes. RSC Adv. 5, 59093–59098 (2015)CrossRefGoogle Scholar
  19. 19.
    S.Y. Liu, C.G. Zuo, S.B. Zhou, W.G. Zheng, Q.G. Feng, Sulfur doped ceria mesoporous nanomaterial: solid-state synthesis, characterization and photocatalytic property of methyl orange. Sci. Adv. Mater. 10, 155–164 (2018)CrossRefGoogle Scholar
  20. 20.
    H.B. Li, G.Y. Huang, J. Zhang, S.H. Fu, T.G. Wang, H.W. Liao, Photochemical synthesis and enhanced photocatalytic activity of MnOx/BiPO4 heterojunction. Trans. Nonferrous Metals Soc. China 27, 1127–1133 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Houas, H. Lachhe, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)CrossRefGoogle Scholar
  22. 22.
    W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance. Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci. Mater. Electron. 28, 15826–15834 (2017)CrossRefGoogle Scholar
  23. 23.
    Y.A. Tyula, A. Zabardasti, H. Goudarziafshar, B. Mirtamizdoust, A new hemidirected lead(II) complex extended in holodirected one dimensional polymer by secondary PbO interactions: a precursor for preparation of PbO nanoparticles, and DFT study. J. Mol. Struct. 1149, 142–148 (2017)CrossRefGoogle Scholar
  24. 24.
    D.L. Perry, T.J. Wilkinson, Synthesis of high-purity alpha-and beta-PbO and possible applications to synthesis and processing of other lead oxide. Appl. Phys. A 89, 77–80 (2007)CrossRefGoogle Scholar
  25. 25.
    A.F. Well, Structural Inorganic Chemistry, 5th edn. (Clarendon press, Oxford, 1984), pp. 556–557Google Scholar
  26. 26.
    T. Yamaguchi, T. Jin, K. Tanabe, Structure of acid sites on sulfur-promoted iron oxide. J. Phys. Chem. 90, 3148–3152 (1986)CrossRefGoogle Scholar
  27. 27.
    S.Y. Liu, Q.L. Tang, Q.G. Feng, Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route. Appl. Surf. Sci. 257, 5544–5551 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Yousefi, A. Zak, J.S. Farid, N.M. Huang, W.J. Basirun, M. Sookhakian, Synthesis and characterization of single crystal PbO nanoparticles in agelatin medium. Ceram. Int. 40, 11699–11703 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Periyat, S.C. Pillai, E.D.M. Cormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photo-catalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C 112, 7644–7652 (2008)CrossRefGoogle Scholar
  30. 30.
    R. Yousefi, M. Cheragizade, J.S. Farid, M.R. Mahmoudian, A. Saa edi, N.M. Huang, Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures. Chin. Phys. B 23, 108101–108107 (2014)CrossRefGoogle Scholar
  31. 31.
    H.M. Hu, C.H. Deng, X.H. Huang, Y. Li, M. Sun, K.H. Zhang, Hydrothermal precursor approach to single-crystal PbS nanosheets at low temperature. Chin. J. Inorg. Chem. 23, 1403–1408 (2007)Google Scholar
  32. 32.
    P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Optical and structural characterization of pure and zinc-doped lead oxide nano-structures synthesized by chemical root method. Optik 127, 6028–6035 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Ang, J. Law, Y.F. Han, Preparation, characterization of sulfur-doped nanosized TiO2 and photocatalytic degradation of methylene blue under visible light. Catal. Lett. 139, 77–84 (2010)CrossRefGoogle Scholar
  34. 34.
    B. Stuart, Infrared Spectroscopy: Fundament and Applications (Wiley, Hoboken, 2004), pp. 72–86CrossRefGoogle Scholar
  35. 35.
    D. De Sousa Meneses, M. Malki, P. Echegut, Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. J. Non-Cryst. Solids 352, 769–776 (2006)CrossRefGoogle Scholar
  36. 36.
    C. John. Schottmiller, Photoconductivity in tetragonal and orthorhombic lead monoxide layers. J. Appl. Phys. 37, 3505–3510 (1966)CrossRefGoogle Scholar
  37. 37.
    F.F. Bentley, L.D. Smithson, A.L. Rozek, Infrared Spectra and Characteristic Frequencies 700–300 cm –1 (Interscience, New York, 1968), p. 103Google Scholar
  38. 38.
    Y.L. Qin, J. Hu, Y.F. Wang, Temperature dependent infrared spectroscopy of methylene blue. J. Shengyang Ligong Univ. (Chin.) 29, 41–43 (2010)Google Scholar
  39. 39.
    M.M. Khan, S.A. Ansari, D. Pradhan, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637–644 (2014)CrossRefGoogle Scholar
  40. 40.
    Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B 142–143, 828–837 (2013)CrossRefGoogle Scholar
  41. 41.
    C. Liu, Y. Zhang, F. Dong, A.H. Reshak, L. Ye, N. Pinna, C. Zeng, T. Zhang, H. Huang, Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B 203, 465–474 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liu Shao-you
    • 1
    • 2
    Email author
  • Chen Yuan-dao
    • 1
  • Qiu Tao-yu
    • 2
  • Ou Li-hui
    • 1
  • Zuo Cheng-gang
    • 1
  • Feng Qing-ge
    • 2
  1. 1.College of Chemistry and Materials EngineeringHunan University of Arts and ScienceChangdeChina
  2. 2.College of Environmental StudiesGuangxi UniversityNanningChina

Personalised recommendations