Structural, Morphological and Optical Properties of ZnO, ZnO:Ni2+ and ZnO:Co2+ Nanostructures by Hydrothermal Process and Their Photocatalytic Activity

  • J. Arul Hency SheelaEmail author
  • S. Lakshmanan
  • A. Manikandan
  • S. Arul Antony


ZnO, ZnO:Ni2+ and ZnO:Co2+ nanoparticles (NPs) were prepared via hydrothermal process. The synthesized samples were characterized by using various techniques such as, FT-IR, powder XRD, SEM-EDX, TEM-SAED, UV–Visible, PL and BET. The as-synthesized ZnO, ZnO:Ni2+ and ZnO:Co2+ NPs exhibit strong physicochemical properties including in structural, surface morphology, chemical composition, surface area, optical and photocatalytic activity were comparatively investigated as function of Ni2+ and Co2+ doping. UV–Visible absorption spectra exhibit blue shifted in absorption edge of ZnO, ZnO:Ni2+ and ZnO:Co2+ NPs compared to bulk counterparts. The photocatalytic activity of the ZnO, ZnO:Ni2+ and ZnO:Co2+ NPs have been evaluated by monitoring the degradation of MeB and RhB dyes under UV light irradiation. In degradation efficiency, 84 and 93% of the MeB and RhB dyes is degraded in the presence of the ZnO:Ni2+ and ZnO:Co2+ photocatalyst under optimum experimental conditions. The rate of de-coloration of MeB and RhB dyes are detected by UV–Visible absorption spectroscopy and organic dye mineralization is confirmed by table of carbon study. In addition, the mechanism of the photocatalytic degradation of MeB and RhB dyes has been briefly discussed.


ZnO Hydrothermal Dopants Optical Photocatalytic MeB and RhB dyes 


  1. 1.
    S. Chakma, V.S. Moholkar, J. Ind. Eng. Chem. 33, 287 (2016)CrossRefGoogle Scholar
  2. 2.
    F.D. Fernando, A.A.S. Oliveira, A.P. Arcanjo, F.C.C. Moura, J.G.A. Pacheco, Appl. Catal. B 186, 142 (2016)Google Scholar
  3. 3.
    P. Zhou, Z. Le, Y. Xie, J. Fang, J. Xu, J. Alloy. Compd. 692, 177 (2017)Google Scholar
  4. 4.
    X. Li, Y. Wu, W. Zhu, F. Xue, Y. Qian, C. Wang, Electrochim. Acta 220, 284 (2016)Google Scholar
  5. 5.
    N. Masunga, G.S. Tito, R. Meijboom, Appl. Catal. A 552, 167 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Mei, T. Liao, Z. Sun, J. Energy Chem. 27, 127 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Dey, Mater. Sci. Eng. B 229, 217 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Bion, F. Can, X. Courtois, D. Duprez, Met. Oxid. Heterogen. Catal 6, 353 (2018)Google Scholar
  9. 9.
    A.J. Haider, R. Hassan, A. Anbari, G.R. Kadhim, C.T. Salame, Energy Proc. 119, 345 (2017)Google Scholar
  10. 10.
    H. Cheshideh, F. Nasirpouri, J. Electroanal. Chem. 797, 133 (2017)CrossRefGoogle Scholar
  11. 11.
    C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, Appl. Catal. B 194, 6 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Rasoulnezhad, G. Kavei, K. Ahmadi, M.R. Rahimipour, Appl. Surf. Sci. 408, 10 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Schlur, S.B. Colin, P. Gilliot, M. Gallart, G. Pourroy, Mater. Sci. Eng. C 38, 19 (2014)CrossRefGoogle Scholar
  14. 14.
    K.D. Kumar, G.P. Kumar, K.S. Reddy, Mater. Today Proc. 2, 3742 (2015)Google Scholar
  15. 15.
    M. Morozova, P. Kluson, J. Krysa, M. Vesely, O. Solcova, Proc. Eng. 42, 580 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Singh, P. Kumari, P.D. Chavan, S. Datta, S. Dutta, Opt. Mater. 73, 383 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Tüysüz, ACS Appl. Mater. Interfaces 8, 32495 (2016), C. K. Chan Google Scholar
  18. 18.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, Scr. Mater. 58, 1013 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.P. Zhang, S.H. Lee, K.R. Reddy, A.I. Gopalan, K.P. Lee, J. Appl. Polym. Sci. 104, 2750 (2007)Google Scholar
  20. 20.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7, 3125 (2007)CrossRefGoogle Scholar
  21. 21.
    A.M. Showkat, Y.P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Bull. Korean Chem. Soc. 28, 1992 (2007)Google Scholar
  22. 22.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat, Y.C. Nho, J. Polym. Sci. A 44, 3364 (2006)CrossRefGoogle Scholar
  23. 23.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3695 (2011)Google Scholar
  24. 24.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chenc, V.G. Gomes, Nanoscale 6, 11994 (2014)CrossRefGoogle Scholar
  25. 25.
    B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Catal. Sci. Technol. 2, 2326 (2012)CrossRefGoogle Scholar
  26. 26.
    U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Munee, Catal. Today 284, 178 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Dhatshanamurthi, M. Shanthi, J. Nanosci. Nanotechnol. 6, 5922 (2016)Google Scholar
  28. 28.
    Y. Weldemariam, T. Welderfael, J. Chem. Mater. Res. 7, 48 (2015)Google Scholar
  29. 29.
    S. Stojadinović, R. Vasilić, N. Radić, N. Tadić, P. Stefanov, B. Grbić, J. Appl. Surf. Sci. 377, 43 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Belaissa, D. Nibou, A.A. Assadi, B. Bellal, M. Trari, J. Taiwan Inst. Chem. Eng. 68, 265 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, J. Alloy. Compd. 665, 410 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, M. Ferid, J. Appl. Surf. Sci. 349, 863 (2015)CrossRefGoogle Scholar
  33. 33.
    E. Kowsari, S. Abdpour, J. Opt. 127, 11576 (2016)Google Scholar
  34. 34.
    Y.Q. Li, Y. Kang, W.J. Ma, H.Q. Wang, Z.J. Min, J. Optoelectron. Adv. 4, 214 (2010)Google Scholar
  35. 35.
    X. Lu, Z. Liu, Y. Zhu, L. Jiang, J. Mater. Res. Bull. 46, 1641 (2011)Google Scholar
  36. 36.
    S.S. Hullavarad, N.V. Hullavarad, D.E. Pugel, S. Dhar, T. Venkatesan, R.D. Vispute, J. Opt. Mater. 30, 1000 (2008)CrossRefGoogle Scholar
  37. 37.
    V. Etacheri, R. Roshan, V. Kumar, J. Appl. Mater. Interface 4, 2725 (2012)Google Scholar
  38. 38.
    T. Takagahara, K. Takeda, Phys. Rev. B 46, 15581 (1992)CrossRefGoogle Scholar
  39. 39.
    A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, J. Lumin. 131, 6 (2011)Google Scholar
  40. 40.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1069 (2015)CrossRefGoogle Scholar
  41. 41.
    C. Lei, M. Pi, D. Xu, C. Jiang, B. Cheng, Appl. Surf. Sci. 426, 368 (2017)Google Scholar
  42. 42.
    H. Zhang, G. Du, W. Lu, L. Cheng, X. Zhu, Z. Jiao, Cryst. Eng. Comm. 14, 3801 (2012)Google Scholar
  43. 43.
    Z. Wang, J. Li, F. Tang, J. Lin, Z. Jin, RSC Adv. 7, 23542 (2017)Google Scholar
  44. 44.
    F. Aousgi, W. Dimassi, B. Bessais, M. Kanzari, Appl. Surf. Sci. 350, 24 (2015)CrossRefGoogle Scholar
  45. 45.
    S.K. Naveen Kumar, K.C. Gayithri, S. Kiran, Int. J. Chem. Res. 7, 942 (2015)Google Scholar
  46. 46.
    L. Shi, F. Wang, Y. Wang, D. Wang, B. Zhao, L. Zhang, D. Zhao, D. Shen, Sci. Rep. 6, 21135 (2016)CrossRefGoogle Scholar
  47. 47.
    N. Sobana, K. Thirumalai, Can. Chem. Trans. 4, 89 (2016)Google Scholar
  48. 48.
    S. Bhatia, N. Verma, R.K. Bedi, Appl. Surf. Sci. 407, 502 (2017)CrossRefGoogle Scholar
  49. 49.
    X. Xu, G. Zhou, B. Feng, Z. Bao, J. Hu, Mater. Lett. 165, 199 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin Solid Film 516, 4619 (2008)Google Scholar
  51. 51.
    A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Mater. Sci. Semicond. Process. 22, 91 (2014)CrossRefGoogle Scholar
  52. 52.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 16 (2015)CrossRefGoogle Scholar
  53. 53.
    S. Bhatia, N. Verma, A. Mahajan, R.K. Bedi, Appl. Mech. Mater. 772, 54 (2015)Google Scholar
  54. 54.
    L. Zhang, L. Li, Z. Mou, X. Li, Proced. Eng. 27, 556 (2012)Google Scholar
  55. 55.
    L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Appl. Catal. A 490, 49 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Arul Hency Sheela
    • 1
    Email author
  • S. Lakshmanan
    • 1
  • A. Manikandan
    • 2
  • S. Arul Antony
    • 1
  1. 1.Department of ChemistryPresidency College (Autonomous)ChennaiIndia
  2. 2.Department of ChemistryBIHER, Bharath UniversityChennaiIndia

Personalised recommendations