Advertisement

Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity

  • Estanislao Porta
  • Sebastián Cogliati
  • Marcos Francisco
  • María Virginia Roldán
  • Nadia Mamana
  • Roberto GrauEmail author
  • Nora PellegriEmail author
Article
  • 124 Downloads

Abstract

The emergence and spread of pathogenic microbes with resistance to multiple antibiotics necessitates the development of new broad-spectrum microbicides. Metal nanoparticles are one such microbicide and they have been recognized for their potential value in fighting harmful microbes. In this work, we show the preparation and antimicrobial characterization of copper nanoparticles, with a small percentage of copper (I) oxide, synthesized by a chemical method based on a bottom-up approach in a nonaqueous medium. In particular, we developed a new route to stabilize the copper nanoparticles, synthesized in ethanol, using an aminosilane as a capping agent. The particles were later centrifuged and suspended in ethylene glycol. The morphology, structure and stability of the Cu-APTMS NPs were characterized by UV–Vis and FTIR spectroscopy, TEM, AFM and GI-XRD techniques. The presence of colloidal nanoparticles was found 4 months after synthesization and a characteristic absorption LSPR band was registered in the UV–Vis spectrum. The Cu-APTMS NPs showed a significant in vitro degradation activity against bacterial DNA, which is important in vivo microbicidal activity. The Cu-APTMS NPs showed a strong bactericidal effect against planktonic forms of Gram-negative (Pseudomonas aeruginosa and enterohemorrhagic Escherichia coli) and Gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. This bactericidal effect was also observed to severely limit the viability and germination proficiency of spores of the food-poisoning and gas-gangrene producer Clostridium perfringens. In addition, pathogenic fungi (Candida tropicalis and Fusarium verticillioides) were irreversibly deactivated by treatment with Cu-APTMS NPs.

Keywords

Copper Nanoparticles Siloxanes Microbicide Sporicide 

Notes

Acknowledgements

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP-2013-0553) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 20103-423 and PICT 2012-2577) for the financial support. We also thank Dra. Renata Strubbia for the assistance in acquiring the TEM images and Dr. Nestor Delorenzi for the use of the zeta potential analizer.

References

  1. 1.
    S. Guo, E. Wang, Noble metal Nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6, 240–264 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Yan, S.C. Warren, P. Fuller, B.A. Grzybowski, Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 11, 603–608 (2016)CrossRefPubMedGoogle Scholar
  3. 3.
    R.A. Potyrailo, Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem. Soc. Rev. 46, 5311–5346 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, H. Gao, Monodisperse noble-metal nanoparticles and their surface enhanced raman scattering properties. Chem. Mater. 20, 6939–6944 (2008)CrossRefGoogle Scholar
  5. 5.
    G. Prieto, J. Zecevic, H. Friedrich, K. Jong, P. Jongh, Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013)CrossRefPubMedGoogle Scholar
  6. 6.
    B. Roldan Cuenya, Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518, 3127–3150 (2010)CrossRefGoogle Scholar
  7. 7.
    S.M. Dizaj, F. Lotfipoura, M. Barzegar-Jalali, M.H. Zarrintana, K. Adibkiab, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Parveen, B. Sannakki, M. Mandke, H. Pathan, Copper nanoparticles: synthesis methods and its light harvesting performance. Solar Energy Mater. Solar Cells 144, 371–382 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Deng, Y. Jin, Y. Cheng, T. Qi, F. Xiao, Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl. Mater. Interfaces 5, 3839–3846 (2013)CrossRefPubMedGoogle Scholar
  10. 10.
    S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y. Seo, B. Ahn, G. Kim, G. Jang, J. Park, B. Ryu, Y. Choi, Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. J. Mater. Chem. C. 1, 2704–2710 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Guo, F. Cao, X. Lei, L. Mang, S. Cheng, J. Song, Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8, 4852–4863 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    T. Ramani, K. Prasant, B. Sreedhar, Air stable colloidal copper nanoparticles: synthesis, characterization and their surface-enhanced Raman scattering properties. Phys. E 77, 65–71 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Gawande, A. Goswami, F. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zborl, R. Varma. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016)CrossRefPubMedGoogle Scholar
  14. 14.
    T. Kruk, K. Szczepanowicz, J. Stefanska, R. Socha. P. Warszynski, Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B 128, 17–22 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Duran Pachon, G. Rothenberg, Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organometal. Chem. 22, 288–299 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Dang-Bao, C. Pradel, I. Favier, M. Gómez, Making copper(0) nanoparticles in glycerol: a straightforward synthesis for a multipurpose catalyst. Adv. Synth. Catal. 359, 2832–2846 (2017)CrossRefGoogle Scholar
  17. 17.
    B.H. Patel, M.Z. Channiwala, S.B. Chaudhari, A.A. Mandot, Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. J. Environ. Chem. Eng. 4, 2163–2169 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Esteban-Tejeda, F. Malpartida, A. Esteban-Cubillo, C. Pecharromán, J.S. Moya. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology. 20, 505701 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    Y.W. Baek, Y.J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci. Total Envirom. 409, 1603–1608 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)CrossRefGoogle Scholar
  21. 21.
    A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 23, 085103 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    M.S. Hassan, T. Amna, O.B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.S. Khil. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B. Biointerfaces. 97, 201–206 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, P. Karmakar, A novel study on antibacterial activity of copper iodide nanoparticles mediated by DNA and membrane damage. Colloids Surf. B. Biointerfaces. 96, 50–55 (2012)CrossRefPubMedGoogle Scholar
  24. 24.
    K. Giannousi, K. Lafazanis, J. Arvanitidis, A. Pantazaki, C. Dendrinou-Samara, Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J. Inorg. Biochem. 133, 24–32 (2014)CrossRefPubMedGoogle Scholar
  25. 25.
    D. Yohan, D. Chithrani, Applications of nanoparticles in nanomedicine. J. Biomed. Nanotechnol. 10, 2371–2392 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    J.A. Lemire, J.J. Harrison, S.P. Turner, Antimicrobial activity of metals, mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Stacy, L. McNally, S.E. Darch, S.P. Brown, M. Whiteley, The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    A.N. Kremer, H.J. Hoffmann, Substractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J. Clin. Microbiol. 50, 3249–3257 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    L.L. Maragakis, E.N. Perencecich, S.E. Cosgrove, Clinical and economic burden of antimicrobial resistance. Expert Rev. Anti-Infect. Ther. 5, 751–763 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Alanis, Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res. 36, 697–705 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    R. Laxminarayan, A. Duse, C. Wattal, A.K.M. Zaidi, F. Heiman, L. Wertheim, N. Sumpradit, E. Vlieghe et al., Antimicrobial resistance the need for global solutions. Lancet Inf. Dis. 12, 1057–1098 (2013)CrossRefGoogle Scholar
  33. 33.
    T.D. Gootz, The global problem of antibiotic resistance. Crit. Rev. Immunol. 30, 79–93 (2010)CrossRefPubMedGoogle Scholar
  34. 34.
    CDC, Antibiotic resistance threats in the United States (Center for Disease Control and Prevention, Atlanta, 2013)Google Scholar
  35. 35.
    U. Theuretzbacher, Antibiotic innovation for future public health needs. Clin. Microbiol. Infect. 23, 713–717 (2017)CrossRefPubMedGoogle Scholar
  36. 36.
    S. Rossiter, M. Fletcher, W. Wuest, Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 117, 12415–12474 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    V. Challinor, H. Bode, Bioactive natural products from novel microbial sources. Ann. NY. Acad. Sci. 1354, 82–97 (2015)CrossRefPubMedGoogle Scholar
  38. 38.
    T. Rahman, B. Yarnall, D. Doyle, Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 46, 647–653 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    S. Correia, P. Poeta, M. Hébraud, J.L. Capelo, G. Igrejas, Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559 (2017)CrossRefPubMedGoogle Scholar
  40. 40.
    D. Dar, R. Sorek, Regulation of antibiotic-resistance by non-coding RNA in bacteria. Curr. Opin. Microbiol. 36, 111–117 (2017)CrossRefPubMedGoogle Scholar
  41. 41.
    N. Hѳiby, T. Bjarnsholt, M. Givskov, S. Molinc, O. Ciofub, Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agent. 35, 322–332 (2010)CrossRefGoogle Scholar
  42. 42.
    A.K. Thabit, J.L. Crandon, D.P. Nicolau, Antimicrobial resistance: impact on clinical and economical outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2, 159–177 (2015)CrossRefGoogle Scholar
  43. 43.
    J.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017)CrossRefGoogle Scholar
  44. 44.
    F.N. Oktar, M. Yetmez, D. Ficai, A. Ficai, F. Dumitru, A. Pica, Molecular mechanisms and targets of the antimicrobial activity of metal nanoparticles. Curr. Top. Med. Chem. 15, 1583–1588 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)CrossRefGoogle Scholar
  46. 46.
    G.R. Rudamurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Vincent, R.E. Duval, P. Hartemann, M. Engels-Deutsch, Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 124, 1032–1046 (2017)CrossRefGoogle Scholar
  48. 48.
    H. Palza, M. Nuñez, R. Bastías, K. Delgado, In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int. J. Antimicrob. Agents 51, 912–917 (2018)CrossRefPubMedGoogle Scholar
  49. 49.
    T.M. Dung Dang, T.T. Tuyet Le, E. Fribourg-Blanc, M. Chien Dang, The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 025004 (2011)CrossRefGoogle Scholar
  50. 50.
    P. Singh, Y. Kim, D. Zhang, D. Yang, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016)CrossRefPubMedGoogle Scholar
  51. 51.
    N. Pantidos, M.C. Edmundson, L. Horsfall, Room temperature bioproduction, isolation and anti-microbial properties of stable elemental copper nanoparticles. New Biotechnol. 40, 275–281 (2018)CrossRefGoogle Scholar
  52. 52.
    N. Nagar, V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 213, 44–51 (2018)CrossRefGoogle Scholar
  53. 53.
    N. Sreeju, A. Rufus, D. Philip, Microwave–assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq. 221, 1008–1021 (2016)CrossRefGoogle Scholar
  54. 54.
    G.H. Hong, S.W. Kang, Synthesis of monodisperse copper nanoparticles by utilizing 1-butyl-3-methylimidazolium nitrate and its role as counteranion in ionic liquid in the formation of nanoparticles. Ind. Eng. Chem. Res. 52, 794–797 (2013)CrossRefGoogle Scholar
  55. 55.
    C. Schmadicke, M. Poetschke, L.D. Renner, L. Baraban, M. Bobeth, G. Cuniberti, Copper nanowire synthesis by directed electrochemical nanowire assembly. RSC Adv 4, 46363–46368 (2014)CrossRefGoogle Scholar
  56. 56.
    M.H. Kang, S.J. Lee, J.Y. Park, J.K. Park, Carbon-coated copper nanoparticles: Characterization and fabrication via ultrasonic irradiation. J. Alloys Compd. 735, 2162–2166 (2018)CrossRefGoogle Scholar
  57. 57.
    A.R. Sadrolhosseini, A.S.B.M. Noor, K. Shameli, G. Mamdoohi, M.M. Moksin, M.A. Mahdi, Laser ablation synthesis and optical properties of copper nanoparticles. J. Mater. Res. 28, 2629–2636 (2013)CrossRefGoogle Scholar
  58. 58.
    A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Adv. 3, 5015–5021 (2013)CrossRefGoogle Scholar
  59. 59.
    A. Wang, L. Chen, F. Xu, Z. Yan, In-situ synthesis of copper nanoparticles within ionic liquid–in—vegetable oil microemulsions and their direct use as high efficient nanolubricants. RSC Adv. 4, 45251–45257 (2014)CrossRefGoogle Scholar
  60. 60.
    L. Xu, J.H. Peng, C. Srinivasakannan, L.B. Zhang, D. Zhang, C. Liu, S.X. Wang, A.Q. Shen. Synthesis of copper nanoparticles by a T-shaped microfluidic device. RSC Adv. 4, 25155–25159 (2014)CrossRefGoogle Scholar
  61. 61.
    Q. Liu, D. Zhou, Y. Yamamoto, R. Ichino, M. Okido, Preparation of Cu nanoparticles with NaH4 by aqueous reduction method. Trans. Nonferrous Met. Soc. China 22, 117–123 (2012)CrossRefGoogle Scholar
  62. 62.
    K. Liu, Y. Song, S. Chen, Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline. Media. J. Power Sources 268, 469–475 (2014)CrossRefGoogle Scholar
  63. 63.
    Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, H. Kawasaki, High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks. ACS Appl. Mater. Interfaces 7, 19382–19389 (2015)CrossRefPubMedGoogle Scholar
  64. 64.
    H.X. Zhang, U. Siegert, R. Liu, W.B. Cai. Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4, 705–708 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Coll. Interface Sci. 311, 417–424 (2007)CrossRefGoogle Scholar
  66. 66.
    M.V. Roldán, P. de Oña, Y. Castro, A. Durán, P. Faccendini, C. Lagier, R. Grau, N.S. Pellegri, Photocatalytic and biocidal activity of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater. Sci. Eng. C 43, 630–640 (2014)CrossRefGoogle Scholar
  67. 67.
    M.V. Roldán, Y. Castro, N. Pellegri, A. Durán, Enhanced photocatalytic activity of mesoporous TiO2 Sol-Gel coatings doped with Ag nanoparticles. J. Sol-Gel Sci. Technol. 76, 180–194 (2015)CrossRefGoogle Scholar
  68. 68.
    C. Rodriguez-Abreu, M. Sánchez-Domínguez, Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, 2016), pp. 159Google Scholar
  69. 69.
    L. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of gold-silica core-shell particles. Langmuir. No. 18 12, 4329–4335 (1996)CrossRefGoogle Scholar
  70. 70.
    P. Pongwan, K. Wetchakun, S. Phanichphan, N. Wetchakun, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res. Chem. Intermed. 42, 4 (2015)Google Scholar
  71. 71.
    X.-M. Zhu, Y.-X.J. Wang, K.C.-F. Leung, S.-F. Lee, F. Zhao, D.-W. Wang, J.M. Lai, C. Wan, C.H. Cheng, A.T. Ahuja, Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int. J. Nanomed. 7, 953–964 (2012)CrossRefGoogle Scholar
  72. 72.
    A.L. Arabolaza, A. Nakamura, M.E. Pedrido, L. Martelotto, L. Orsaria, R.R. Grau. Characterization of a novel inhibitory feeback of the anti-anti-sigma SpoIIA on Spo0A activation during development in Bacillus subtilis. Mol. Microbiol. 47, 1251–1263 (2003)CrossRefPubMedGoogle Scholar
  73. 73.
    M.B. Méndez, A. Goñi, W. Ramirez, R.R. Grau. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Microb. Pathog. 52, 85–91 (2012)CrossRefPubMedGoogle Scholar
  74. 74.
    R. Grau, D. Gardiol, G.C. Glikin, D. de Mendoza, DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol. Microbiol. 11, 933–941 (1994)CrossRefPubMedGoogle Scholar
  75. 75.
    V.A. Philippe, M.B. Méndez, I.H. Huang, L.M. Orsaria, M.R. Sarker, R.R. Grau. Inorganic phosphate induces spore morphogenesis and enterotoxin production in the intestinal pathogen Clostridium perfringens. Infect. Immun. 74, 3651–3656 (2006)Google Scholar
  76. 76.
    T. Igarashi, P. Setlow, Interaction between individual protein components of the GerA and GerB nutrient receptors that trigger germination on Bacillus subtilis spores. J. Bacteriol. 187, 2514–2518 (2005)CrossRefGoogle Scholar
  77. 77.
    D.V. Ravi Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, J. Moon, Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: exploring the dual role of alkyl amines. Phys. Chem. Chem. Phys. 16, 22107 (2014)CrossRefGoogle Scholar
  78. 78.
    K. Rice, A. Paterson, M. Stoykovich, Nanoscale Kirkendall effect and oxidation kinetics in copper nanocrystals characterized by real-time, in situ optical spectroscopy, Part. Part. Syst. Charact. 32, 1–8 (2014)Google Scholar
  79. 79.
    L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuclear Inst. Methods Phys. Res. B 268, 334–340 (2010)CrossRefGoogle Scholar
  80. 80.
    C. Salzemann, A. Brioude, M.-P. Pileni, Tuning of copper nanocrystals optical properties with their shapes. J. Phys. Chem. B 110, 7208–7212 (2006)CrossRefPubMedGoogle Scholar
  81. 81.
    S. Bhattacharjee, DLS and zeta potential-What they are and what they are not? J. Control. Release 235, 337–351 (2016)CrossRefPubMedGoogle Scholar
  82. 82.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd. edn. (John Wiley & Sons Ltd., Chichester, 2001), p. 145Google Scholar
  83. 83.
    L. Téllez, F. Rubio, R. Peña-Alonso, J. Rubio, Seguimiento por espectroscopia infrarroja (FT-IR) de la copolimerización de TEOS (tetraetilortosilicato) y PDMS (polidimetilsiloxano) en presencia de tbt (tetrabutiltitanio). Bol. Soc. Esp. Ceram. 43, 883–890 (2004)CrossRefGoogle Scholar
  84. 84.
    M.V. Roldán, N.S. Pellegri, O.A. de Sanctis, Optical response of silver nanoparticles stabilized by amines to LSPR based sensors. Proc. Mater. Sci. 1, 594–600 (2012)CrossRefGoogle Scholar
  85. 85.
    R.C. Rodríguez, L. Yate, E. Coy, ÁM. Martínez-Villacorta, A.V. Bordonia, S. Moya, P.C. Angelomé, Copper nanoparticles synthesis in hybrid mesoporous thin films: controlling oxidation state and catalytic performance through pore chemistry. Appl. Surf. Sci. 471, 862–868 (2019)CrossRefGoogle Scholar
  86. 86.
    V. Donato, F. Rodríguez Ayala, S. Cogliati, C. Bauman, J.G. Costa, C. Leñini, R. Grau, Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signaling pathway. Nat Commun. 8, 14332 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    M. Mendez, I. Huang, K. Ohtani, R. Grau, T. Shimizu, M.R. Sarker, Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J. Bacteriol. 190, 48–60 (2008)CrossRefPubMedGoogle Scholar
  88. 88.
    J.M. Rangel, P.H. Sparling, C. Crowe, P.M. Griffin, D.L. Swerdlow, Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    J.A. Vázquez-Boland, M. Kuhn, P. Berche, T. Chakraborty, G. Domínguez-Bernal, W. Goebel, B. González-Zorn, J. Wehland, J. Kreft, Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Y.D. Bakthavatchalam, L.E. Nabarro, B. Veeraraghavan, Evolving rapid methicillin-resistant Staphylococcus aureus detection: cover all the bases. J. Glob. Infect. Dis. 9, 18–22 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    A.K. Chatterjee, R. Chakraborty, T. Basu, Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25, 135101 (2014)CrossRefPubMedGoogle Scholar
  92. 92.
    T. Maniatis, E.F. Fritsch, J. Sambrook. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory, New York, 545, 1982). ISBN 0-87969-136-0Google Scholar
  93. 93.
    A. Bonici, G. Lusvardi, G. Malavasi, L. Menabue, A. Piva, Synthesis and characterization of bioactive glasses functionalized with Cu nanoparticles and organic molecules. J. Eur. Ceram. Soc. 32, 2777–2783 (2012)CrossRefGoogle Scholar
  94. 94.
    V. Ainaa, G. Cerrato, G. Martra, G. Malavasid, G. Lusvardid, L. Menabue, Towards the controlled release of metal nanoparticles from biomaterials: physico-chemical, morphological and bioactivity features of Cu-containing sol-gel glasses. Appl. Surf. Sci. 283, 240–248 (2013)CrossRefGoogle Scholar
  95. 95.
    S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Clust. Sci. 22, 121–129 (2011)CrossRefGoogle Scholar
  96. 96.
    M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, F. Mücklich. Role of copper oxides in contact killing of bacteria. Langmuir 29, 16160–16166 (2013)CrossRefPubMedGoogle Scholar
  97. 97.
    O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205, 219–223 (2010)CrossRefGoogle Scholar
  98. 98.
    S. Cogliati, J.G. Costa, F. Rodriguez Ayala, V. Donato, R. Grau, Bacterial spores and its relatives as agents of mass destruction. J. Bioterror. Biodef 7, 141 (2016)CrossRefGoogle Scholar
  99. 99.
    M.J. Leggett, G. McDonnell, S.P. Denyer, P. Setlow, J.Y. Maillard, Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol. 113, 485–498 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Estanislao Porta
    • 1
  • Sebastián Cogliati
    • 2
  • Marcos Francisco
    • 2
  • María Virginia Roldán
    • 1
  • Nadia Mamana
    • 1
  • Roberto Grau
    • 2
    Email author
  • Nora Pellegri
    • 1
    Email author
  1. 1.Laboratorio Materiales Cerámicos, Instituto de Física RosarioUniversidad Nacional de Rosario, CONICETRosarioArgentina
  2. 2.Laboratorio de Microbiología Molecular, FBioyFUniversidad Nacional de Rosario, CONICETRosarioArgentina

Personalised recommendations