Advertisement

Interaction Behavior of Cyanogen Fluoride and Chloride Gas Molecules on Red Phosphorene Nanosheet: A DFT Study

  • P. Snehha
  • V. Nagarajan
  • R. ChandiramouliEmail author
Article

Abstract

The adsorption of cyanogen fluoride and chloride gas molecules on red phosphorene (RP) nanosheet was investigated using the first-principles calculation. We confirmed the geometric solidity of RP nanosheet using the formation energy and the energy band gap is detected to be 0.72 eV. The most stable adsorption configurations of cyanogen halides are studied by energy band gap variation, Bader charge transfer, and adsorption energy. We observed the physisorption type of interaction upon exposure of cyanogen halides on RP nanosheet. Furthermore, the band gap structure along with the density of states spectrum indicates the physisorption of cyanogen halide on RP nanosheet. The variation in the band gap upon adsorption leads to modify the resistance of RP nanosheet. The findings show that RP nanosheets can be used to detect the presence of cyanogen chloride and fluoride.

Graphical Abstract

Keywords

Red phosphorene Nanosheet Cyanogen fluoride Cyanogen chloride Adsorption 

Notes

Acknowledgements

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for financial support.

Supplementary material

10904_2018_1070_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1883 KB)

References

  1. 1.
    G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, X.M.S. Strano, X.V.R. Cooper, O.L. Liang, S.G. Louie, E. Ringe, W. Zhou, O.S.S. Kim, R.R. Naik, B.G. Sumpter, O.H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, ÂM. Terrones, J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, S. Guo, Z. Chen, Y. Wang, Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30, 1800865 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, Recent advances in synthesis, properties, and applications of phosphorene. Npj 2D Mater. Appl. 5, 1–13 (2017).  https://doi.org/10.1038/s41699-017-0007-5 Google Scholar
  5. 5.
    G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró, Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)CrossRefGoogle Scholar
  7. 7.
    C. He, C. Zhang, C. Tang, T. Ouyang, J. Li, J. Zhong, Five low energy phosphorene allotropes constructed through gene segments recombination. Sci. Rep. 7, 46431 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015)CrossRefGoogle Scholar
  9. 9.
    P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914)CrossRefGoogle Scholar
  10. 10.
    A.R. Davletshin, S.V. Ustiuzhanina, A.A. Kistanov, D. Saadatmand, S.V. Dmitriev, K. Zhou, E.A. Korznikova, Electronic structure of graphene- and BN-supported phosphorene. Phys. B 534, 63–67 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, W. Hu, A. Du, X. Lu, Y. Zhang, J. Zhou, X. Lin, Y. Tang, Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433, 249–255 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Xu, W. Guo, Optimal water adsorption on phosphorene. J. Alloys Compd. 737, 365–371 (2018)CrossRefGoogle Scholar
  13. 13.
    P. Rubio-pereda, G.H. Cocoletzi, Density functional theory calculations of biomolecules adsorption on phosphorene for biomedical applications. Appl. Surf. Sci. 427, 1227–1234 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Cho, Y. Lee, H. Koh, H. Jung, J. Kim, H. Yoo, J. Kim, H. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28, 7020–7028 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Yasaei, A. Behranginia, T. Foroozan, M. Asadi, K. Kim, Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 9, 9898–9905 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Yang, D. Wang, X. Wang, D. Zhang, N. Koratkar, Recent advances in phosphorene as a sensing material. Nano Today 20, 13–32 (2018)CrossRefGoogle Scholar
  17. 17.
    R.C. Gupta, Handbook of Toxicology of Chemical Warfare Agents (Academic Press, New York, 2009), pp 1168.  https://doi.org/10.1016/B978-0-12-374484-5.X0001-6 Google Scholar
  18. 18.
    T. Movlarooy, M.A. Fadradi, Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem. Phys. Lett. 700, 7–14 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Soltani, M.T. Baei, A.S. Ghasemi, E.T. Lemeski, K. Hosseni, Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices Microstruct. 75, 564–575 (2014)CrossRefGoogle Scholar
  20. 20.
    E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model. 23, 138 (2017)CrossRefGoogle Scholar
  21. 21.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials. J. Phys. 14, 2745–2779 (2002)Google Scholar
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  23. 23.
    J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRefGoogle Scholar
  24. 24.
    R.K. Bhavadharani, V. Nagarajan, R. Chandiramouli, Applied surface science density functional study on the binding properties of nucleobases to stanane nanosheet. Appl. Surf. Sci. 462, 831–839 (2018)CrossRefGoogle Scholar
  25. 25.
    J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations. Phys. Rev. B 16, 1748–1749 (1977)CrossRefGoogle Scholar
  26. 26.
    R.G. Amorim, R.H. Scheicher, Silicene as a new potential DNA sequencing device. Nanotechnology 26, 154002 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Mukhopadhyay, R.H. Scheicher, R. Pandey, S.P. Karna, Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2, 2442–2447 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, A new phase of phosphorus: the missed tricycle type red phosphorene. J. Phys. 27, 265301 (2015)Google Scholar
  29. 29.
    P. Snehha, V. Nagarajan, R. Chandiramouli, Doped aluminum nanocones as an efficient electron field emitter: a first-principles investigation. Inorg. Chem. Commun. 96, 5–12 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Turi, J. Dannenberg, Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J. Phys. Chem. 97, 2488–2490 (1993)CrossRefGoogle Scholar
  31. 31.
    J. Beheshtian, M.T. Baei, Z. Bagheri, A.A. Peyghan, AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron. J. 43, 452–455 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Chandiramouli, Antimonene nanosheet device for detection of explosive vapors—a first-principles inspection. Chem. Phys. Lett. 708, 130–137 (2018)CrossRefGoogle Scholar
  33. 33.
    A.A. Peyghan, M. Noei, S. Yourdkhani, Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 59, 115–122 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Beheshtian, M. Noei, H. Soleymanabadi, A. Ahmadi, Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534, 650–654 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Gholami, A. Shokuhi, A. Heydarinasab, M. Ardjmand, Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study. J. Alloys Compd. 686, 662–668 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Shokuhi, E. Sani, E. Binaeian, M. Peyravi, M. Jahanshahi, DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene. Appl. Surf. Sci. 401, 156–161 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Ullah, A.A. Tahir, T.K. Mallick, Polypyrrole/TiO2 composites for the application of photocatalysis. Sens. Actuators B 241, 1161–1169 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Ullah, A.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)CrossRefGoogle Scholar
  39. 39.
    H.N.V. Reyes, E.C. Anota, M. Castro, C60-like boron carbide and carbon nitride fullerenes: stability and electronic properties obtained by DFT methods. Fullerenes Nanotubes Carbon Nanostruct. 26, 52–60 (2018)CrossRefGoogle Scholar
  40. 40.
    J.C. Ordaz, E.C. Anota, M.S. Villanueva, M. Castro, Possibility of a magnetic [BN fullerene:B6 cluster]—nanocomposite as a vehicle for the delivery of dapsone. New J. Chem. 41, 8045–8052 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, First-principles insights on the electronic and field emission properties of Ga and Al doped germanium nanocones. J. Electron Spectrosc. Relat. Phenom. 227, 15–22 (2018)CrossRefGoogle Scholar
  42. 42.
    T.P. Kaloni, R.P. Joshi, N.P. Adhikari, U. Schwingenschlögl, Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl. Phys. Lett. 104, 073116 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Mukherjee, T.P. Kaloni, Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J. Nanopart. Res. 14, 1059 (2012)CrossRefGoogle Scholar
  44. 44.
    T.P. Kaloni, G. Schreckenbach, M.S. Freund, U. Schwingenschlögl, Current developments in silicene and germanene. Phys. Status Solidi RRL 142, 133–142 (2016)CrossRefGoogle Scholar
  45. 45.
    V. Nagarajan, R. Chandiramouli, Interaction studies of ammonia gas molecules on borophene nanosheet and nanotubes: a density functional study. J. Inorg. Organomet. Polym. Mater. 28, 920–931 (2018)CrossRefGoogle Scholar
  46. 46.
    R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Arsenene nanotube as a chemical sensor to detect the presence of explosive vapors: a first-principles insight. J. Inorg. Organomet. Polym. Mater. 28, 2844–2853 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ComputingSASTRA Deemed UniversityTirumalaisamudram, ThanjavurIndia
  2. 2.School of Electrical & Electronics EngineeringSASTRA Deemed UniversityTirumalaisamudram, ThanjavurIndia

Personalised recommendations