Advertisement

Selective Photodegradation on Dual Dye System by Recoverable Nano SnO2 Photocatalyst

  • D. Venkatesh
  • S. Pavalamalar
  • K. AnbalaganEmail author
Article
  • 25 Downloads

Abstract

A facile co-precipitation technique was developed to prepare SnO2 nanoparticles using stannous chloride dihydrate (SnCl2⋅2H2O) and characterized. The photocatalytic efficiency of nano SnO2 was tested for degradation of Rhodamine B: C28H31ClN2O3 + (nano SnO2/λ = 254 nm) + reactive species (O2−, •OH, OOH) → H2O + CO2. In addition, mixture of Rhodamine B (RhB) and malachite green oxalate (MGO) were selected as the dual dye system (model pollutants) and their influencing factors such as concentration of mixtures (RhB + MGO), catalyst dosage, intensity of light source (254 and 365 nm), pH were also studied. Blank experiment (without catalyst) and surface adsorption indicates that Rhodamine B degrades at relatively very slow rate with k = 2.30 × 10−3 min−1 and k = 2.4 × 10−3 min−1 respectively. However, nano SnO2 induces a large increment in degradation rate corresponding with k = 4.0 × 10−3 min−1 (RhB = 8.69 × 10−6 M, catalyst 50 mg/100 mL, λ = 254 nm) and mixed dyes kRhB = 18.96 × 10−3 min−1 and kMGO = 26.5 × 10−3 min−1 were obtained. Further, the reusability of the catalyst was sustained up to three cycles and verified with XRD pattern.

Keywords

Nanoscale SnO2 Dual dye Mixed pollutants Photocatalysis 

Notes

Acknowledgements

KA records his sincere thanks to the Council of Scientific and Industrial Research-HRDG (EMR Division, No. 01(2953)/18/EMR-II/1.5.2018), New Delhi, for financial support through major research project. The authors thank CIF, Pondicherry University for providing instrumental facility.

References

  1. 1.
    N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 157, 111 (2003)CrossRefGoogle Scholar
  2. 2.
    N. Wetchakun, P. Wanwaen, S. Phanichphant, K. Wetchakun, RSC Adv. 7, 13911 (2017)CrossRefGoogle Scholar
  3. 3.
    H.Y. Li, Y.H. Gong, Q.Q. Huang, H. Zhang, Ind. Eng. Chem. Res. 52, 15560 (2013)CrossRefGoogle Scholar
  4. 4.
    S.G. Seong, E.J. Kim, Y. Kim, K. Lee, S. Hahn, Appl. Surf. Sci. 256, 1 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Sun, X. Li, Y. Quan, Y. Yin, S. Zheng, Chemosphere 136, 181 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Dey, Mater. Sci. Eng. B 229, 206 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Zhou, K. Jia, X. He, S. Wei, P. Wang, X. Liu, Mater. Chem. Phys. 207, 212 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, Sol. Energy Mater. Sol. Cells 79, 133 (2003)CrossRefGoogle Scholar
  9. 9.
    Q. Wali, A. Fakharuddin, R. Jose, J. Power Sources 293, 1039 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, Z. Zhu, Sens. Actuators B 207, 83 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Zhang, Y. Zhen, F. Sun, C. Xu, Mater. Sci. Eng. B 209, 37 (2016)CrossRefGoogle Scholar
  12. 12.
    M.S. Fu, L. Ni, N. Du, J. Alloys Compds. 591, 65 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Deng, C. Fang, G. Chen, J. Power Sources 304, 81 (2016)CrossRefGoogle Scholar
  14. 14.
    E. Haritha, S.M. Roopan, G. Madhavi, G. Elango, N.A. Al-Dhabi, M.V. Arasu, J. Photochem. Photobiol. B 162, 441 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Zhao, X. Wu, Mater. Lett. 210, 354 (2018)CrossRefGoogle Scholar
  16. 16.
    V.K. Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.M. Khan, J. Qin, R.V. Mangalaraja, J. Mol. Liq. 232, 423 (2017)CrossRefGoogle Scholar
  17. 17.
    A.S. Ganeshraja, K. Rajkumar, K. Zhu, X. Li, S. Thirumurugan, W. Xu, J. Zhang, M. Yang, K. Anbalagan, J. Wang, RSC Adv. 6, 72791 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Zhang, L. Wang, X. Zhang, C. Shao, J. Hu, G. Shao, Appl. Catal. B 167, 193 (2015)Google Scholar
  19. 19.
    S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Water Air Soil Pollut. 215, 3 (2011)CrossRefGoogle Scholar
  20. 20.
    A.M. Al-Hamdi, M. Sillanpää, J. Dutta, Res. Chem. Intermed. 42, 3055 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manag. 85, 956 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Venkatesh, S. Pavalamalar, K. Anbalagan, J. Mater. Sci. Mater. Electron. (Submitted)Google Scholar
  23. 23.
    S. Begum, M. Ahmaruzzaman, Appl. Surf. Sci. 449, 780 (2018)CrossRefGoogle Scholar
  24. 24.
    A.C. Pradhan, M.K. Sahoo, S. Bellamkonda, K.M. Parida, G.R. Rao, RSC Adv. 6, 94263 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Fu, C. Pan, L. Zhang, Y. Zhu, Mater. Res. Bull. 42, 696 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu, H.D. Sun, Appl. Phys. Lett. 95, 061908 (2009)CrossRefGoogle Scholar
  27. 27.
    K. Suematsu, N. Ma, M. Yuasa, T. Kida, K. Shimanoe, RSC Adv. 5, 86347 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, Nanoscale 5, 9812 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Obregón, G. Colón, J. Mol. Catal. A 376, 40 (2013)CrossRefGoogle Scholar
  30. 30.
    A.K. Sinha, M. Pradhan, S. Sarkar, T. Pal, Environ. Sci. Technol. 47, 2339 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Wang, S. Zhou, Appl. Surf. Sci. 256, 6191 (2010)CrossRefGoogle Scholar
  32. 32.
    M.A. Sh. Sohrabnezhad, M. Zanjanchi, Razavi, Spectrochim. Acta A 130, 129 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You, C. Lv, J. Phys. Chem. Solids 113, 86 (2018)CrossRefGoogle Scholar
  34. 34.
    I. Poulios, A. Avranas, E. Rekliti, A. Zouboulis, J. Chem. Technol. Biotechnol. 75, 205 (2000)CrossRefGoogle Scholar
  35. 35.
    Q. Yang, F. Chen, X. Li, D. Wang, Y. Zhong, G. Zeng, RSC Adv. 6, 60291 (2016)CrossRefGoogle Scholar
  36. 36.
    W.Q. Cui, H. Wang, Y.H. Liang, Chem. Eng. J. 230, 10 (2013)CrossRefGoogle Scholar
  37. 37.
    L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, Appl. Catal. A 363, 221 (2009)CrossRefGoogle Scholar
  38. 38.
    F. Li, Z. Li, M. Zhang, Y. Shen, Y. Cai, Y. Li, X. He, C. Chen, RSC Adv. 7, 34705 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Lingyue Liu, G. Shu, Zhang, S. Liu, ACS Appl. Nano Mater. 1, 31 (2018)CrossRefGoogle Scholar
  40. 40.
    G. Fu, P.S. Vary, C.-T. Lin, J. Phys. Chem. B 109, 18 (2005)Google Scholar
  41. 41.
    P.C. Redfern, P. Zapol, L.A. Curtiss, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 11419 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryPondicherry UniversityPondicherryIndia

Personalised recommendations