Advertisement

Enhancement the Photocatalytic and Biological Activity of Nano-sized ZnO Using Hyperbranched Polyester

  • Ahmed F. Ghanem
  • Abdelrahman A. BadawyEmail author
  • Maysa E. Mohram
  • Mona H. Abdelrehim
Article

Abstract

This work represents the synthesis of nanocomposites based hyperbranched polyester (HPES) and ZnO nanorods (ZnO NRs) as photocatalysts. The nanorods were prepared by thermal treatment of Zn acetate. The nanocomposites were synthesized either by adding of the nano-rods polycondensation reaction (in-situ method, I-HPES/ZnO), or by ex-situ mixing technique (E-HPES/ZnO). The as-prepared ZnO NRs and their nanocomposites were characterized by X-ray diffraction (XRD), surface area (SBET), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and UV–Viz. absorption. Transmission electron microscope (TEM) revealed that the formed NRs are lower than 40 nm in diameter and higher than 100 nm in length. Photocatalytic investigations clarified that modified ZnO-NRs acquire higher reactivity after modification with HPES. The highest photocatalytic degradation were given by E-HPES/ZnO. Durability test proved the feasibility of using the formed nanocomposites several times in the degradation system on the other hand, ZnO suffered a pronounced decrease in the photocatalytic activity. Antibacterial activity emphasized that the obtained nanocomposites have inhibition effect against harmful microorganisms higher than ZnO NRs.

Keywords

Photocatalysis ZnO nanorods Hyperbranched polyester Antibacterial 

Notes

Acknowledgements

Financial support from National Research Centre (NRC), In-house Project No. 11090113 is gratefully acknowledged.

References

  1. 1.
    A. Hu, A. Apblett (eds.), Nanotechnology for Water Treatment and Purification (Springer, Cham, 2014)Google Scholar
  2. 2.
    A.S. Adeleye et al., Chem. Eng. J. 286, 640 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Baruah, J. Dutta, Chem. Lett. 7, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Sugunan, J. Dutta, Pollution Treatment, Remediation, and Sensing. In Nanotechnology, vol. 3, ed. by K. Harald (Wiley, Weinheim, 2008)Google Scholar
  5. 5.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  7. 7.
    S. Baruah, S.K. Pal, J. Dutta, Nanosci. Nanotechnol. Asia 2, 90 (2012)CrossRefGoogle Scholar
  8. 8.
    U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C. 9, 1 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 12, 013004 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    S.-Y. Lee, S.-J. Park, J. Ind. Eng. Chem. 19, 1761 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Thin Solid Films 520, 5561 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Kim, K.A. Yong, J. Nanoparticle Res. 14, 1 (2012)Google Scholar
  13. 13.
    A.A. Khodja, T. Sehili, J.F. Pihichowski, P. Boule, J. Photochem. Photobiol. A 141, 231 (2001)CrossRefGoogle Scholar
  14. 14.
    H. Agarwal, S.V. Kumar, S. Rajeshkumar, Resour. Effic. Technol. 3, 406 (2017)CrossRefGoogle Scholar
  15. 15.
    D.P. Singh, Sci. Adv. Mater. 2, 245 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Ipeksac, F. Kaya, C. Kaya, Mater. Lett. 100, 11 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J.H. Li, J. Phys. Chem. C 112, 8850 (2008)CrossRefGoogle Scholar
  18. 18.
    G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
  19. 19.
    N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Appl. Phys. A 124, 710 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Omri, O.M. Lemine, L.El Mir, Ceram. Int. 43, 6585 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B 537, 167 (2018)CrossRefGoogle Scholar
  22. 22.
    I. Poulios, D. Makri, X. Prohaska, Global NEST Int. J. 1, 55 (1999)Google Scholar
  23. 23.
    E.R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28, 786 (1994)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Akyol, M. Bayramoglu, J. Hazard. Mater. B 124, 241 (2005)CrossRefGoogle Scholar
  26. 26.
    N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)CrossRefGoogle Scholar
  27. 27.
    R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzi, G. Mascolo, G. Agostiano, Appl. Catal. B 60, 1 (2005)CrossRefGoogle Scholar
  28. 28.
    Z.Y. He, Y.G. Li, Q.H. Zhang, H.Z. Wang, Appl. Catal. B 93, 376 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Sharma, P. Rao, R.P. Mathur, S.C. Ameta, J. Photochem. Photobiol. A 86, 197 (1995)CrossRefGoogle Scholar
  30. 30.
    C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, J. Mol. Catal. A 310, 159 (2009)CrossRefGoogle Scholar
  31. 31.
    R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227, 312 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Colis, H. Bieber, S. Begin-Colin, G. Schmerber, C. Leuvrey, A. Dinia, Chem. Phys. Lett. 422, 529 (2006)CrossRefGoogle Scholar
  33. 33.
    R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194 (2008)CrossRefPubMedGoogle Scholar
  34. 34.
    V.E. Podasca, T. Buruiana, E.C. Buruiana, Appl. Surf. Sci. 377, 262 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Di Mauro, M. Cantarella, G. Nicotra et al., Sci. Rep. 7, 40895 (2016).  https://doi.org/10.1038/srep40895 CrossRefGoogle Scholar
  36. 36.
    B.I. Voit, A. Lederer, Chem. Rev. 109, 5924 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    Z. Shi, Y. Zhou, D. Yan, Macromol. Rapid Commun. 29, 412 (2008)CrossRefGoogle Scholar
  38. 38.
    H.A. Mohamed, M.H. AbdelRehim, Anti-Corros. Methods Mater. 62, 95 (2015)CrossRefGoogle Scholar
  39. 39.
    A.F. Ghanem, A. El-Gendi, M.H. AbdelRehim, K.M. El-Khatib, RSC Adv. 6, 32245 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Zhou, C. Xu, H. Huang, J. Nanoelectron. Optoelectron. 12, 196 (2017)CrossRefGoogle Scholar
  41. 41.
    A.F. Ghanem, A.A. Badawy, N. Ismail, Z. Rayn Tian, M.H. Abdel Rehim, A. Rabia, Appl. Catal. A 472, 191 (2014)CrossRefGoogle Scholar
  42. 42.
    B.D. Cullity, Publishing Cos, 2nd edn. (Wesley, Reading,, 1978), p. 102Google Scholar
  43. 43.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, San Diego, 1999), p. 19Google Scholar
  44. 44.
    A.K. Zak, W.H. Majid, M. Darroudi, R. Yousefi, Mater. Lett. 65, 70 (2011)CrossRefGoogle Scholar
  45. 45.
    A.A. Badawy, Sh.M. Ibrahim, Int. Res. J. Pure Appl. Chem. 14, 1 (2017)CrossRefGoogle Scholar
  46. 46.
    A. Khalyavina, F. Schallausky, H. Komber, M.Al Samman, W. Radke, A. Lederer, Macromolecules. 43, 3268 (2010)CrossRefGoogle Scholar
  47. 47.
    C.-C. Lin, Y.-Y. Li, Mater. Chem. Phys. 113, 334 (2009)CrossRefGoogle Scholar
  48. 48.
    R. Vasireddi, B. Javvaji, H. Vardhan, D.R. Mahapatra, G.M. Hegde, J. Mater. Sci. 52, 2007 (2017)CrossRefGoogle Scholar
  49. 49.
    L.T. Jule, F.B. Dejene, A.G. Ali, K.T. Roro, A. Hegazy, N.K. Allam, E. El Shenawy, J. Alloys Compds. 687, 920 (2016)CrossRefGoogle Scholar
  50. 50.
    X. Zhang et al., Sci. Rep. 4, 4596 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    M. Arakha, M. Saleem, B.C. Mallick, S. Jha, Sci. Rep. 5, 9578 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward, J. Am. Chem. Soc. 74(8), 2125 (1952)CrossRefGoogle Scholar
  53. 53.
    P.L. Pauson, J. Organomet. Chem. 637–639, 3 (2001)Google Scholar
  54. 54.
    N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)CrossRefPubMedGoogle Scholar
  55. 55.
    I. Restrepoa, P. Floresa, S. Rodríguez-Llamazares, Polym. Plast. Technol. Eng. 58, 105 (2019).  https://doi.org/10.1080/03602559.2018.1466168
  56. 56.
    P. Bazant, T. Sedlacek, I. Kuritka, D. Podlipny, P. Holcapkova, Materials 11, 363 (2018)CrossRefPubMedCentralGoogle Scholar
  57. 57.
    S.-W. Zhao, C.-R. Guo, Y.-Z. Hu, Y.-R. Guo, Q.-J. Pan, Open Chem. 16, 9 (2018)CrossRefGoogle Scholar
  58. 58.
    Y. Liu et al., J. Appl. Microbiol. 107, 1193 (2009)CrossRefPubMedGoogle Scholar
  59. 59.
    T. Xu, C.S. Xie, Prog. Org. Coat. 46, 297 (2003)CrossRefGoogle Scholar
  60. 60.
    O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001)CrossRefGoogle Scholar
  61. 61.
    Z. Emami-Karvani, P. Chehrazi, African J. Microbiol. Res. 5, 1368 (2011)Google Scholar
  62. 62.
    K.H. Tam, A.B. Djurišić, C.M.N. Chan, Y.Y. Xi et al., Thin Solid Films 516, 6167 (2008)CrossRefGoogle Scholar
  63. 63.
    R. Sinha, R. Karan, A. Sinha, S. Khare, Bioresour. Technol. 102, 1516 (2011)CrossRefPubMedGoogle Scholar
  64. 64.
    M.H. Abdel Rehim, M.A. El-Samahy, A.A. Badawy, M.E. Mohram, Carbohydr. Polym. 148, 194 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed F. Ghanem
    • 1
  • Abdelrahman A. Badawy
    • 2
    Email author
  • Maysa E. Mohram
    • 3
  • Mona H. Abdelrehim
    • 1
  1. 1.Division of Chemical Industries Research, Packing and Packaging Materials DepartmentNational Research CentreGizaEgypt
  2. 2.Physical Chemistry Department, Inorganic Chemical Industries and Mineral ResourcesNational Research CentreGizaEgypt
  3. 3.Genetic Engineering and Biotechnology Division, Department of Microbial ChemistryNational Research CentreGizaEgypt

Personalised recommendations