Tailoring Shape and Crystallographic Phase of Copper Sulfide Nanostructures Using Novel Thiourea Complexes as Single Source Precursors

  • Kevin I. Y. Ketchemen
  • Malik D. Khan
  • Sixberth Mlowe
  • Linda D. Nyamen
  • Peter T. NdifonEmail author
  • Paul O’Brien
  • Neerish RevaprasaduEmail author


Copper sulfide thin films and nanoparticles have been prepared via aerosol assisted chemical vapour deposition and solvothermal hot injection routes, respectively. Both routes employed heterocyclic amine based benzoylthioureato-copper(II) complexes as single source precursors. Copper sulfide thin films of diverse morphologies ranging from cubic to snowy or irregular crystallites depending on the deposition temperature were observed. Powder X-ray diffraction studies of the as deposited thin films have indicated the formation of hexagonal and cubic phases of copper sulfide. In the case of the nanoparticles, Roxbyite (Cu1.75S) phase was obtained in dodecanethiol at temperatures of 150, 190 and 230 °C. However, a preferred growth of nanoparticles was observed in the presence of oleylamine whereas the roxbyite phase was obtained at temperatures of 150, 200 and 250 °C. Also transmission electron microscopy showed the formation of close to spherical, hexagonal nano-disk and rod shaped nanoparticles.


Heterocyclic thiourea Aerosol assisted chemical vapour deposition Thermolysis Copper sulfide Nanoparticles Thin films 



The authors thank the Royal Society/Department for International Development (RS-DFID) Africa Capacity Building Initiative programme and the National Research Foundation (NRF) South Africa through the South African Research Chair Initiative (SARChI) for their financial support. The authors also acknowledge the University of Kwa-Zulu Natal for TEM analyses.

Supplementary material

10904_2018_1066_MOESM1_ESM.docx (438 kb)
Supplementary material 1 (DOCX 437 KB)


  1. 1.
    B. Srinivas, B.G. Kumar, K. Muralidharan, Stabilizer free copper sulphide nanostructures for rapid photocatalytic decomposition of rhodamine B. J. Mol. Catal. Chem. 410, 8–18 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Lei, P. Qin, W. Ke, Y. Guo, X. Dai, Z. Chen et al., Performance enhancement of polymer solar cells with high work function CuS modified ITO as anodes. Org. Electron. 22, 173–179 (2015)CrossRefGoogle Scholar
  3. 3.
    A.A. Sagade, R. Sharma, Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sens. Actuators B 133, 135–143 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Zhou, N. Peng, Z. Liu, Y. Xi, H. He, Y. Xia, Z. Liu, S. Okada, Synthesis of sub-10 nm copper sulfide rods as high-performance anode for long-cycle life Li-ion batteries. J. Power Sources 306, 408–412 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 139, 401–407 (2014)CrossRefGoogle Scholar
  6. 6.
    B. Mulder, Optical properties of crystals of cuprous sulphides (chalcosite, djurleite, Cu1. 9S, and digenite. Phys. Status Solidi A 13, 79–88 (1972)CrossRefGoogle Scholar
  7. 7.
    Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Lotfipour, T. Machani, D.P. Rossi, K.E. Plass, α-Chalcocite nanoparticle synthesis and stability. Chem. Mater. 23, 3032–3038 (2011)CrossRefGoogle Scholar
  9. 9.
    Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu et al., Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5, 9761–9771 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Song, L. Han, W. Zou, Z. Xiao, X. Huang, Z. Qin et al., A novel photothermal nanocrystals of Cu7S4 hollow structure for efficient ablation of cancer cells. Nano–Micro Lett. 6, 169–177 (2014)Google Scholar
  11. 11.
    Y. Takano, N. Uchiyama, S. Ogawa, N. Môri, Y. Kimishima, S. Arisawa et al., Superconducting properties of CuS2– xSex under high pressure. Physica C 341, 739–740 (2000)CrossRefGoogle Scholar
  12. 12.
    M.D. Khan, M.A. Malik, J. Akhtar, S. Mlowe, N. Revaprasadu, Phase pure deposition of flower-like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures. Thin Solid Films 638, 338–344 (2017)CrossRefGoogle Scholar
  13. 13.
    A.L. Abdelhady, K. Ramasamy, M.A. Malik, P. O’Brien, S.J. Haigh, J. Raftery, New routes to copper sulfide nanostructures and thin films. J. Mater. Chem. 21, 17888–17895 (2011)CrossRefGoogle Scholar
  14. 14.
    W.P. Lim, C.T. Wong, S.L. Ang, H.Y. Low, W.S. Chin, Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 18, 6170–6177 (2006)CrossRefGoogle Scholar
  15. 15.
    M.D. Khan, M. Akhtar, M.A. Malik, N. Revaprasadu, P. O’Brien, New examples of phase control in the preparation of copper sulfide nanoparticles and deposition of thin films by AACVD from bis (piperidinedithiocarbamato) copper(II) complex. ChemistrySelect 3, 2943–2950 (2018)CrossRefGoogle Scholar
  16. 16.
    X.-S. Du, Z.-Z. Yu, A. Dasari, J. Ma, Y.-Z. Meng, Y.-W. Mai, Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem. Mater. 18, 5156–5158 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Li, H. Wang, W. Xu, H. Si, X. Tao, S. Lou et al., Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interface Sci. 330, 483–487 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Lou, M. Chen, X. Wang, W. Liu, Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. J. Phys. Chem. C 111, 9658–9663 (2007)CrossRefGoogle Scholar
  19. 19.
    J.M. Luther, H. Zheng, B. Sadtler, A.P. Alivisatos, Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Y. Hu, Q. Zhang, J. Ge, Z. Lu, Y. Hou et al., One-pot synthesis and optical property of copper(I) sulfide nanodisks. Inorg. Chem. 49, 6601–6608 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Chen, Y.-B. Chen, L.-M. Wu, Synthesis of uniform Cu2S nanowires from copper – thiolate polymer precursors by a solventless thermolytic method. J. Am. Chem. Soc. 126, 16334–16335 (2004)CrossRefGoogle Scholar
  22. 22.
    M.D. Khan, J. Akhtar, M.A. Malik, N. Revaprasadu, Tuning the phase and shape of copper sulfide nanostructures using mixed solvent systems. ChemistrySelect 1, 5982–5989 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Al-Shakban, P.D. Matthews, G. Deogratias, P.D. McNaughter, J. Raftery, I. Vitorica-Yrezabal et al., Novel xanthate complexes for the size-controlled synthesis of copper sulfide nanorods. Inorg. Chem. 56, 9247–9254 (2017)CrossRefGoogle Scholar
  24. 24.
    H.-T. Zhang, G. Wu, X.-H. Chen, Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 21, 4281–4282 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Zhang, G. Wu, X. Chen, Controlled synthesis and characterization of covellite (CuS) nanoflakes. Mater. Chem. Phys. 98, 298–303 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Jen-La Plante, T.W. Zeid, P. Yang, T. Mokari, Synthesis of metal sulfide nanomaterials via thermal decomposition of single-source precursors. J. Mater. Chem. 20, 6612–6617 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Ghezelbash, B.A. Korgel, Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 21, 9451–9456 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Tang, S. Qu, K. Li, Y. Hou, F. Teng, J. Cao et al., One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals. Nanotechnology 21, 285602 (2010)CrossRefGoogle Scholar
  29. 29.
    S.-Y. Wang, W. Wang, Z.-H. Lu, Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films. Mater. Sci. Eng. B 103, 184–188 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Sartale, C. Lokhande, Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater. Chem. Phys. 65, 63–67 (2000)CrossRefGoogle Scholar
  31. 31.
    H. Hu, P. Nair, Electrical and optical properties of poly (methyl methacrylate) sheets coated with chemically deposited CuS thin films. Surf. Coat. Technol. 81, 183–189 (1996)CrossRefGoogle Scholar
  32. 32.
    A.A. Memon, M. Dilshad, N. Revaprasadu, M.A. Malik, J. Raftery, J. Akhtar, Deposition of cadmium sulfide and zinc sulfide thin films by aerosol-assisted chemical vapors from molecular precursors. Turk. J. Chem. 39, 169–178 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Trindade, P. O’Brien, Synthesis of CdS and CdSe nanoparticles by thermolysis of diethyldithio-or diethyldiseleno-carbamates of cadmium. J. Mater. Chem. 6, 343–347 (1996)CrossRefGoogle Scholar
  34. 34.
    N. Moloto, N. Revaprasadu, M. Moloto, P. O’Brien, M. Helliwell, N, N′-Diisopropyl-and N, N′-dicyclohexylthiourea cadmium(II) complexes as precursors for the synthesis of CdS nanoparticles. Polyhedron 26, 3947–3955 (2007)CrossRefGoogle Scholar
  35. 35.
    M. Lazell, S.J. Nørager, P. O’Brien, N. Revaprasadu, The use of dithio-and diselenocarbamates as precursors to nanoscale materials. Mater. Sci. Eng. C 16, 129–133 (2001)CrossRefGoogle Scholar
  36. 36.
    M. Afzaal, D. Crouch, M.A. Malik, M. Motevalli, P. O’Brien, J.H. Park et al., Deposition of II-VI thin films by LP-MOCVD using novel single-source precursors. Eur. J. Inorg. Chem. 2004, 171–177 (2004)CrossRefGoogle Scholar
  37. 37.
    C.Q. Nguyen, A. Adeogun, M. Afzaal, M.A. Malik, P. O’Brien, Facile and reproducible syntheses of bis (dialkylselenophosphenyl)-selenides and-diselenides: X-ray structures of (i Pr2PSe)2Se,(i Pr2PSe)2Se2 and (Ph2PSe)2Se. Chem. Commun. 20, 2179–2181 (2006)CrossRefGoogle Scholar
  38. 38.
    T. Alqahtani, M.D. Khan, D.J. Kelly, S.J. Haigh, D.J. Lewis, P. O’Brien, Synthesis of Bi2– 2x Sb2xS3 (0 ≤ x ≤ 1) solid solutions from solventless thermolysis of metal xanthate precursors. J. Mater. Chem. C. 6, 12652–12659 (2018)CrossRefGoogle Scholar
  39. 39.
    M.D. Khan, G. Murtaza, N. Revaprasadu, P. O’Brien, Synthesis of chalcopyrite-type and thiospinel minerals/materials by low temperature melts of xanthates. Dalton Trans. 47, 8870–8873 (2018)CrossRefGoogle Scholar
  40. 40.
    K.I. Ketchemen, S. Mlowe, L.D. Nyamen, A.A. Aboud, M.P. Akerman, P.T. Ndifon et al., Heterocyclic lead(II) thioureato complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorg. Chim. Acta 479, 42–48 (2018)CrossRefGoogle Scholar
  41. 41.
    M.D. Khan, S. Hameed, N. Haider, A. Afzal, M.C. Sportelli, N. Cioffi et al., Deposition of morphology-tailored PbS thin films by surfactant-enhanced aerosol assisted chemical vapor deposition. Mater. Sci. Semicond. Process. 46, 39–45 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Arslan, N. Külcü, U. Flörke, Synthesis and characterization of copper(II), nickel(II) and cobalt(II) complexes with novel thiourea derivatives. Transit. Met. Chem. 28, 816–819 (2003)CrossRefGoogle Scholar
  43. 43.
    M. Mikami, I. Nakagawa, T. Shimanouchi, Far infra-red spectra and metal—ligand force constants of acetylacetonates of transition metals. Spectrochim. Acta A 23, 1037–1053 (1967)CrossRefGoogle Scholar
  44. 44.
    M. Merdivan, F. Karipcin, N. Kulcu, R. Aygun, Study of the thermal decompositions on N, N-dialkyl-N’-benzoylthiourea complexes of Cu(II), Ni(II), Pd(II), Pt(II), Cd(II), Ru(III) and Fe(III). J. Ther. Anal. Calorim. 58, 551–557 (1999)CrossRefGoogle Scholar
  45. 45.
    N. Mntungwa, M. Khan, S. Mlowe, N. Revaprasadu, A simple route to alkylamine capped antimony nanoparticles. Mater. Lett. 145, 239–242 (2015)CrossRefGoogle Scholar
  46. 46.
    M.D. Khan, J. Akhtar, M.A. Malik, M. Akhtar, N. Revaprasadu, Phase-pure fabrication and shape evolution studies of SnS nanosheets. New J. Chem. 39, 9569–9574 (2015)CrossRefGoogle Scholar
  47. 47.
    M.D. Khan, M. Aamir, M. Sohail, M. Sher, J. Akhtar, M.A. Malik et al., Novel single source precursor for synthesis of Sb2Se3 nanorods and deposition of thin films by AACVD: photo-electrochemical study for water reduction catalysis. Sol. Energy 169, 526–534 (2018)CrossRefGoogle Scholar
  48. 48.
    M.D. Khan, M. Aamir, G. Murtaza, M.A. Malik, N. Revaprasadu, Structural investigations of SnS1– xSex solid solution synthesized from chalcogeno-carboxylate complexes of organo-tin by colloidal and solvent-less routes. Dalton Trans. 47, 10025–10034 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kevin I. Y. Ketchemen
    • 1
    • 2
    • 3
  • Malik D. Khan
    • 1
  • Sixberth Mlowe
    • 1
  • Linda D. Nyamen
    • 2
  • Peter T. Ndifon
    • 2
    Email author
  • Paul O’Brien
    • 3
    • 4
  • Neerish Revaprasadu
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of ZululandKwadlangezwaSouth Africa
  2. 2.Department of Inorganic ChemistryUniversity of Yaoundé IYaoundéCameroon
  3. 3.School of ChemistryUniversity of ManchesterManchesterUK
  4. 4.School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations