Advertisement

Performance Enhancement of Chitosan Filled Silver Vanadate Nano-rods

  • D. M. Ayaad
  • M. Y. A. Abdelaal
  • A. M. Aboelkheir
  • A. M. AbdelghanyEmail author
Article
  • 7 Downloads

Abstract

Silver vanadate nanorods synthesized via chemical precipitation route at room temperature were characterized using UV/Vis. optical electronic spectra, fourier transform infrared (FTIR) spectroscopy, transmission and scanning electron microscopy (TEM, SEM), Zeta potential and X-ray diffraction (XRD). XRD indicates the presence of both β and α phases of silver vanadate. Chitosan samples filled with pre-calculated amounts of synthesized silver vanadate nano-rods were prepared via ordinary casting route. XRD of the prepared polymeric samples reveals amorphous nature and indicating a homogenous distribution of inorganic filler within the matrix without any tendency for crystallization. FTIR shows maintenance of chitosan characteristic bands in all samples. Optical energy gap for both direct and indirect transitions generally indicates a gradual decrease with increasing inorganic filler content. The biological activity against two-gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), two gram-negative bacteria (Escherichia coli, Pseudomonas aeuroginosa) in addition to one fungus (Candida albicans) were also studied and correlated with both optical energy gap and nanoparticle dopant concentration.

Keywords

Chitosan Silver vanadate XRD FTIR UV/Vis. Zeta Potential 

Notes

References

  1. 1.
    D.R. Paul, L.M. Robeson, Polym. Nanotechnol. 49, 3187 (2008)Google Scholar
  2. 2.
    E. Sorlier, M. Sclavons, C. Bailly, J.M. Lefebvre, J. Devaux, Prog. Org. Coat. 58, 87 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Qiao, X. Ma, J. Zhang, J. Yao, Food Chem. 235, 45 (2017)CrossRefGoogle Scholar
  4. 4.
    K.L.M. Taaca, M.R. Vasquez Jr, Microporous Mesoporous Mater. 241, 383 (2017)CrossRefGoogle Scholar
  5. 5.
    R. Poonguzhali, S.K. Basha, V.S. Kumari, Int. J. Biol. Macromol. 105, 111 (2017)CrossRefGoogle Scholar
  6. 6.
    A.S. Abd-El-Aziz, E.K. Todd, K.M. Epp, J. Inorg. Organomet. Polym. 8, 127 (1998)CrossRefGoogle Scholar
  7. 7.
    G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, Compos Part B 114, 348 (2017)CrossRefGoogle Scholar
  8. 8.
    H.Y. Atay, E. Çelik, Prog. Org. Coat. 102, 194 (2017)CrossRefGoogle Scholar
  9. 9.
    A.A.B. Shavandi, M.M. Ali, Mater. Sci. Eng. 56, 481 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Kumar, B. Suresh, S. Das, I.B. Obot, A.Y. Adesina, S. Ramakrishna, Carbohyd. Polym. 173, 121 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Djerahov, P. Vasileva, I. Karadjova, R.M. Kurakalva, K.K. Aradhi, Carbohyd. Polym. 147, 45 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Rahmi, S. Julinawati, Carbohyd. Polym. 170, 226 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Biao, S. Tan, Y. Wang, X. Guo, Y. Fu, F. Xu, Y. Zu, Z. Liu, Mater. Sci. Eng. 76, 73 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Sharma, R. Dhiman, N. Rokana, H. Panwar, Front. Microbiol. 8, 1735 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang, X. Zhang, Y. Yang, Y. Wang, Appl. Surf. Sci. 391, 476 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, Y. Yang, X. Lv, Y. Wang, L. Cui, Catalysts 7, 382 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Wang, H. Zhang, L. Liu, B. Shin, F. Shan, Mater. Lett. 169, 82 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Zhao, Y. Guo, S. Wang, H. He, C. Sun, S. Yang, Appl. Catal. B 165, 335 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, Y. Yang, L. Song, Y. Wang, C. He, Z. Wang, L. Cui. Mol. Catal. 447, 80 (2018)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, H. Li, X. Lv, J. Xu, Y. Wang, C. He, N. Liu, Y. Yang, Y. Wang, Chemistry 24, 8822 (2018)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, L. Song, F. Hou, Y. Yang, Y. Wang, N. Liu, Int. J. Hydrog. Energy 43(39), 18279 (2018)CrossRefGoogle Scholar
  22. 22.
    M.S. Meikhail, A.M. Abdelghany, W.M. Awad, Egypt. J. Pure Appl. Sci. 5, 138 (2018)Google Scholar
  23. 23.
    P. Phanjom, G. Ahmed, Nanosci. Nanotechnol. 5, 14 (2015)Google Scholar
  24. 24.
    D.P. Singh, K. Polychronopoulou, C. Rebholz, S.M. Aouadi, Nanotechnology 21, 325601 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Liang, L.F. Zhu, P. Liu, H.B. Li, J. Xiao, X.W. Ji, G.W. Yang, Cryst. Eng. Commun. 15, 6131 (2013)CrossRefGoogle Scholar
  26. 26.
    F. Sauvage, V. Bodenez, J.M. Tarascon, K.R. Poeppelmeier, J. Am. Chem. Soc. 132, 6778 (2010)CrossRefGoogle Scholar
  27. 27.
    B.H. Fard, R.R. Khojasteh, P. Gharbani, J. Inorg. Organomet. Polym. 28, 1149 (2018)CrossRefGoogle Scholar
  28. 28.
    A.B. Afzal, M.J. Akhtar, J. Inorg. Organomet. Polym. 20, 783 (2010)CrossRefGoogle Scholar
  29. 29.
    B.R. Singh, Infrared analysis of peptides and proteins (ACS Publication, Washington DC, 2000)Google Scholar
  30. 30.
    A.M. Heyns, M.W. Venter, K.J. Range, Z. für Naturforschung B 42(7), 843 (1987)CrossRefGoogle Scholar
  31. 31.
    V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, Solid State Sci. 39, 34 (2015)CrossRefGoogle Scholar
  32. 32.
    A.M. Abdelghany, H.A. ElBatal, Mater. Des. 89, 568 (2016)CrossRefGoogle Scholar
  33. 33.
    A.H. Hammad, A.M. Abdelghany, J. Non-Cryst. Solids 433, 14 (2016)CrossRefGoogle Scholar
  34. 34.
    R.D. Holtz, B.A. Lima, A.G.S. Filo, M. Brocchi, O.L. Alves, Nanomedicine 8, 935 (2012)CrossRefGoogle Scholar
  35. 35.
    R.D. Holtz, A.G.S. Filho, M. Brocchi, D. Martins, N. Dur´an, O.L. Alves, Nanotechnology 21, 18 (2010)CrossRefGoogle Scholar
  36. 36.
    A.M. Abdelghany, M.S. Meikhail, G.E.A. Abdelraheem, S.I. Badr, N. ElSheshtawy, Int. J. Environ. Stud. 126, 1 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Spectroscopy Department, Physics DivisionNational Research CenterGizaEgypt
  3. 3.Basic Science DepartmentHorus UniversityNew Damietta, Kafr SaadEgypt

Personalised recommendations