Advertisement

Novel Synthesized Benzesulfonamide Nanosized Complexes; Spectral Characterization, Molecular Docking, Molecular Modeling and Analytical Application

  • Ismail Althagafi
  • Marwa G. Elghalban
  • Nashwa M. El-MetwalyEmail author
Article
  • 74 Downloads

Abstract

New series, for sulfa drug complexes, was prepared from Cu(II), Ag(I), Cd(II) and Hg(II) ions. The new sulfisoxazole derivative and its corresponding complexes were fully characterized through all, analytical, spectral and theoretical tools. The mode of bonding, is pentadentate mode, in all complexes, which having bi-central atoms. The coordination number four, was proposed with all complexes, except Cu(II) complex, which has square-pyramidal geometry. XRD patterns and SEM images, introduce, the nanocrystalline nature for all investigated compounds. Molecular modeling, was carried out for all compounds, to modulate the structural forms, the best method execute the aim, was, DFT/B3LYP. Utilizing frontier energy gaps, the following parameters, electronegativity (χ), chemical potential (μ), global hardness (η), global softness (S), global electrophilicity index (ω) and absolute softness (ϭ) were computed. The docking process, was executed from sulfa drug ligand, against pathogen proteins as, 1jm7, 2hq6 and 3lvq, which attributing for, breast, colon and liver tumors, respectively. The computed parameters, among them, the inhibition constant (1.09 KCal/uM), which displayed that, the tested sulfa drug derivative, is considered a promising anti-colon cancer. The antitumor screening against, MCF-7, HEPG-2 and HCT-116cell lines, displays promising results with Hg(II) and Cd(II) complexes covered all cell lines. IC50 values for them were ˂ 4, which considered, best toxic feature against tumor cells. A specific analytical application, was done, upon the use of sulfa drug ligand as an acid- base indicator. This study was carried out versus, different types of titrations, in comparing with referenced indicators (Me.O and Ph.Ph). High conformity in the titration end point, using the proposed indicator with that known, was obtained. It is worthy to note that, the compound achieved the exact end point for weak acid- weak base titration, which is considered a shining spot in the study.

Keywords

Benzesulfonamide Acid-base indicator Modeling Docking Spectral Antitumor 

Notes

Supplementary material

10904_2018_1062_MOESM1_ESM.docx (8.5 mb)
Supplementary material 1 (DOCX 8685 KB)

References

  1. 1.
    G. Valarmathy, R. Subbalakshmi, Int. J. Pharm. Bio. Sci. 4(2), 1019–1029 (2013)Google Scholar
  2. 2.
    R.B.P. Elmes, M. Erby, S.M. Cloonan, S.J. Quinn, D.C. Williams, T. Gunnlaugsson, Chem. Commun. 47, 686–688 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Massey, Y.-Z. Xu, P. Karran, Curr. Biol. 11, 1142–1146 (2001)CrossRefGoogle Scholar
  4. 4.
    R.R. Coombs, M.K. Ringer, J.M. Blacquire, J.C. Smith, J.S. Neilsen, Transit. Metal Chem. 30, 411–418, (2005)CrossRefGoogle Scholar
  5. 5.
    J.H.B. Nunes, R.E.F. Paiva, A. Cuin, W.R.L. Corbi, Polyhedron 85, 437 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Cesmea, A. Golcu, I. Demirtas, Spectrochim. Acta A 135, 887 (2015) 3.CrossRefGoogle Scholar
  7. 7.
    F.A. Khodir, J. Nanomed. Nanotechnol. 6(5), 326 (2015)Google Scholar
  8. 8.
    R. Karmakar, C.R. Choudhury, D.L. Hughes, S. Mitra, Inorg. Chim. Acta 360, 2631 (2007)CrossRefGoogle Scholar
  9. 9.
    C.N. Banti, Metallomics 5, 569 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Sutradhar, M.V. Kirillova, M.F.C. Guedes da Silva, C.M. Liu, A.J.L. Pombeiro, Dalton Trans. 42, 16578–16587 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Senthil Raja, N.S.P. Bhuvanesh, K. Natarajan, Eur. J. Med. Chem. 47, 73–85 (2012)CrossRefGoogle Scholar
  12. 12.
    K.M. Vyas, R.N. Jadeja, D. Patel, R.V. Devkar, V.K. Gupta, Polyhedron 65, 262–274 (2013)CrossRefGoogle Scholar
  13. 13.
    S.Y. Ebrahimipour, M. Mohamadi, J. Castro, N. Mollania, H. Amiri Rudbari, A. Sacca, J. Coord. Chem. 68, 632–649 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Medici, M. Peana, V.M. Nurchi, J.I. Lachowicz, G. Crisponi, M.A. Zoroddu, Coord. Chem. Rev. 284, 329 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114, 815 (2014)CrossRefGoogle Scholar
  16. 16.
    F.A. Saad, M.G. Elghalban, N.M. El-Metwaly, H. El-Ghamry, A.M. Khedr, Appl. Organometall. Chem. 31(10), ,3721 (2017)CrossRefGoogle Scholar
  17. 17.
    F.A. Saad, J. Therm. Anal. Calorim. 129(1), 425–440 (2017)CrossRefGoogle Scholar
  18. 18.
    A.I. Vogel, Text Book Of quantitative Inorganic Analysis (Longman, London, 1986)Google Scholar
  19. 19.
    G.A. Bain, J.F. Berry, J. Chem. Educ. 85, 532 (2008)CrossRefGoogle Scholar
  20. 20.
    E.S. Freeman, B. Carroll, J. Phys. Chem. 62, 394–397 (1958)CrossRefGoogle Scholar
  21. 21.
    W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  22. 22.
    T. Ozawa, Bull. Chem. Sot. Japan. 38, 1881–1886 (1965)CrossRefGoogle Scholar
  23. 23.
    W.W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974)Google Scholar
  24. 24.
    J.H.F. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. A. 70, 487 (1996)Google Scholar
  25. 25.
    P. Kofstad, Nature. 179, 1362–1363 (1957)CrossRefGoogle Scholar
  26. 26.
    H.W. Horowitz, G.A. Metzger, Anal. Chem. 35, 1464–1468 (1963)CrossRefGoogle Scholar
  27. 27.
    X. Wu. A.K. Ray, Surf. Phys. Rev. B. 65, 85403 (2002)CrossRefGoogle Scholar
  28. 28.
    M.J. Frisch et al., Gaussian 09, Revision D (Gaussian, Inc., Wallingford, CT, 2010)Google Scholar
  29. 29.
    R. Dennington, T. Keith, J. Millam, Gauss View, Version 4.1.2, SemichemInc, Shawnee Mission, KS, 2007Google Scholar
  30. 30.
    T.A. Halgren, J. Comput. Chem. 17(5–6), 490–519 (1998)Google Scholar
  31. 31.
    G.M. Morris, D.S. Goodsell et al., J. Comput. Chem. 19(14), 1639–1662 (1998)CrossRefGoogle Scholar
  32. 32.
    D.S. Solis, R.J.B. Wets, Research 6(1), 19–30 (1981)Google Scholar
  33. 33.
    W. Geary, J. Coord. Chem. Rev. 7, 81–122 (1971)CrossRefGoogle Scholar
  34. 34.
    K. Nakamoto, P.J. Mc Carthy, Spectroscopy and Structure of Metal Chelate Compounds (John Wiley, New York, 1968)Google Scholar
  35. 35.
    U. El-Ayaan, M.M. Youssef, S. Al-Shihry, J. MolStruct. 936, 213–219 (2009)CrossRefGoogle Scholar
  36. 36.
    F.A. Saad, H. Jabir, N.M. Al-Fahemi, N. El-Metwaly, M.G. Yarkandy, G.A. El-Ghalban, Al-Hazmy, K.A. Saleh, J. Therm. Anal. Calorim. 128, 1565–1578 (2017)CrossRefGoogle Scholar
  37. 37.
    A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1986)Google Scholar
  38. 38.
    N.M. El-Metwaly, M.S. Refat, Spectrochim. Acta Part A 78, 196–204 (2011)CrossRefGoogle Scholar
  39. 39.
    B.D. Cullity, Elements of X-Ray Diffraction 2nd edn. (Addison-Wesley Inc, Boston, 1993)Google Scholar
  40. 40.
    A.A. Fahem, Spectrochim. Acta A 88, 10–22 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Shahrjerdi, S.S.H. Davarani, E. Najafi, M.M. Amini, Ultrason. Sonochem. 22, 382–390 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Velumani, X. Mathew, P.J. Sebastian, S.K. Narayandass, D. Mangalaraj, Solar Energy Mater. Solar Cells 76, 347–358 (2003)CrossRefGoogle Scholar
  43. 43.
    S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P.O. Brien, Inorg. Chem. 49, 1198 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Mokari, M. Zhang, P. Yang, J. Am. Chem. Soc. 129, 9864–9865 (2007)CrossRefGoogle Scholar
  45. 45.
    S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414, 105–113 (2004)CrossRefGoogle Scholar
  46. 46.
    U. El-Ayaan, N.M. El-Metwally, M.M. Youssef, S.A. El Bialy, Spectrochim. Acta Part A 68, 1278–1286 (2007)CrossRefGoogle Scholar
  47. 47.
    R.K. Ray, G.R. Kauffman, Inorg. Chem. Acta 173, 207–214 (1990)CrossRefGoogle Scholar
  48. 48.
    R.C. Chikate, S.B. padhye, Polyhedron 24, 1689–1700 (2005)CrossRefGoogle Scholar
  49. 49.
    S. Sagdinc, B. Köksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917, 63–70 (2009)CrossRefGoogle Scholar
  50. 50.
    I. Fleming, Frontier Orbital’s and Organic Chemical Reactions (Wiley, London, 1976)Google Scholar
  51. 51.
    S.K. Tripathi, R. Muttineni, S.K. Singh, J. Theor. Biol. 334, 87–100 (2013)CrossRefGoogle Scholar
  52. 52.
    M.M. Al-Iede, J. Karpelowsky, D.A. Fitzgerald, Pediatr. Pulmonol. 51(4):394–401 (2015)Google Scholar
  53. 53.
    N. Terakado, S. Shintani, Y. Nakahara, Oncol. Rep. 7, 1113–1117 (2000)Google Scholar
  54. 54.
    C. Fosset, B.A. McGaw, M.D. Reid, J. Inorg. Biochem. 99, 1018–1022 (2005)CrossRefGoogle Scholar
  55. 55.
    N.M. El-Metwaly, A.A. El-Asmy, J. Coord. Chem, 59(14), 1591–1601 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ismail Althagafi
    • 1
  • Marwa G. Elghalban
    • 1
    • 2
  • Nashwa M. El-Metwaly
    • 1
    • 2
    Email author
  1. 1.Chemistry Department, College of Applied SciencesUmm Al-Qura UniversityMakkahSaudi Arabia
  2. 2.Chemistry Department Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations