Advertisement

Synergistic Effect Between WO3/Activated Carbon and BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution

  • Habiba. Kiran
  • M. B. TahirEmail author
  • T. Iqbal
  • A. HassanEmail author
Article
  • 98 Downloads

Abstract

Modified composite of the pure monoclinic tungstun oxide with 2.0% of activated carbon photocatalyst with BiVO4 as coupling content is synthezed via facile hydrothermal route. The composite is fabricated with coupling ratio of 0.5%,1.0%,1.5% and 2.0% dopant BiVO4. These composite were characterized by the XRD, SEM, UV–Vis, PL and BET to investigate the various properties (particle size, structural, morphological, purity and optical) and the energy band of the photocatalytic material. It is commonly examined that the C-WO3 showed the extraneous results for the evolution of the hydrogen energy by increasing the coupling contents upto 1.5% of BiVO4 and gave extraordinary photocatalytic activity towards the hydrogen energy production. The formation of the orthorhombic phases from the monoclinic and hexagonal at 2.0% of doping content indicated the increase of size of the particles and energy band gap. The average grain size of the composite is ranging from 30 to 50 nm. The increment of the BiVO4 content in the C-WO3 composite causes the reduction of photocatalytic activity because of the increase in the grain size and the forbidden gap of the photocatalytic composite.

Keywords

WO3 H2 evolution Photocatalyst BiVO4 

Notes

References

  1. 1.
    R. Segurado et al., Integrated analysis of energy and water supply in islands case study of S. Vicente. Cape Verde. Energy 92, 639–648 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Acar, I. Dincer, G.F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 1–25 (2016)Google Scholar
  3. 3.
    M.B. Tahir, M. Sagir, Khurram shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3–TiO2 @g-C3N4 composite. J. Hazard. Mater. 363, 205–213 (2019)CrossRefGoogle Scholar
  4. 4.
    C. Dincer, Acar, A review on clean energy sources for better sustainability. Int. J. Energy Res. 39, 585–606 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)CrossRefGoogle Scholar
  6. 6.
    S.E. Hosseini, M. AbdulWahid, Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016)CrossRefGoogle Scholar
  7. 7.
    S.J. Darzi, A.R. Mahjoub, Investigation of phase transformations and photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2 composites. J. Alloy. Compd. 486, 805–808 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Elsellami, F. Dappozze, A. Houas, C. Guillard, Effect of Ag + reduction on the photocatalytic activity of Ag-doped TiO2. Superlattices Microstruct. 109, 511–518 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Shang, B. Tong, H. Yu, I.N. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L.Z. Wu, C.H. Tung, T. Zhang, CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater 6, 1501241–1501247 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Gu, Y. Yan, J.L. Young, K.X. Steirer, N.R. Neale, J.A. Turner, Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 6, 456 (2015)Google Scholar
  11. 11.
    T.M. Ismail, A.K. Azab, M.A. Elkady, M.M. Abo, Elnasr, Theoretical investigation of the performance of integrated seawater desalination plant utilizing renewable energy. Energy Convers. Manag. 126, 811–825 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47, 5804–5806 (2011)CrossRefGoogle Scholar
  13. 13.
    Q. Xue, Y. Liu, Q. Zhou, M. Utsumi, Z. Zhang, N. Sugiura, Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3 catalyst under simulated solar light. Chem. Eng. J. 283, 614–621 (2016)CrossRefGoogle Scholar
  14. 14.
    I. Szekely, G. Kovács, L. Baia, V. Danciu, Z. Pap, Synthesis of shape-tailored WO3 micro-/nanocrystals and the photocatalytic activity of WO3/TiO2 composites. Materials 9, 258 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Gan, L. Xu, S. Shang, X. Zhou, L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 42(14), 15235–15241 (2016)CrossRefGoogle Scholar
  16. 16.
    M.B. Tahir, G. Nabi, A. Hassan, T. Iqbal, H. Kiran, A. Majid, Morphology tailored synthesis of C-WO3 nanostructures and its photocatalatic application. J. Inorg. Organomet. Polym Mater. 28(3), 738–745 (2018)CrossRefGoogle Scholar
  17. 17.
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011)CrossRefGoogle Scholar
  18. 18.
    P. Chatchai, Y. Murakami, S. Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electrochim. Acta 54, 1147–1152 (2009)CrossRefGoogle Scholar
  19. 19.
    T. Kim, K. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Rao, simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011)CrossRefGoogle Scholar
  22. 22.
    P. Chatchai, S. Kishioka, Y. Murakami, A. Nosaka, Y. Nosaka, Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 55, 592–596 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S. Ho Oh, J.K. Kim, J.H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5775, 1–8 (2014)Google Scholar
  24. 24.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weiss, P. Yang, X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. R. Soc. Chem. 2(3), 5–9 (2016)Google Scholar
  26. 26.
    M.B. Tahir et al., Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)CrossRefGoogle Scholar
  27. 27.
    M.B. Tahir, M. Sagir, M. Zubair, M. Rafique, I. Abbas, M. Shakil, I. Khan, S. Afsheen, A. Hasan, A. Ahmed, WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J. Inorg. Organomet. Polym Mater. 28, 1107–1113 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GujratGujratPakistan

Personalised recommendations